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Abstract. A geometrical framework is presented for modelling general systems of mixed
first- and second-order ordinary differential equations. In contrast to our earlier work on non-
holonomic systems, the first-order equations are not regarded harprasi given constraints.

Two nonlinear (parametrized) connections appear in the present framework in a symmetrical
way and they induce a third connection via a suitable fibred product. The space where solution
curves of the given differential equations live, singles out a specific projestionong the many
fibrations in the general picture. A large part of the paper is about the development of intrinsic
tools—tensor fields and derivations—for an adapted calculus alory major issue concerns

the extent to which the usual construction of a linear connection associated with second-order
equations fails to work in the presence of coupled first-order equations. An application of the
ensuing calculus is presented.

1. Introduction

There has recently been a considerable amount of interest in the study of non-holonomic
mechanics (see [1,2,5,10-12, 15,18, 19, 24, 33] for a sample of geometrical approaches).
In our earlier work [28, 31] we considered the case of Lagrangian systems subject to linear
non-holonomic constraints, and we paid most of our attention to what could be called
generalizecf:aplygin systems, which is the case where the constraints are generated by a
connection on an auxiliary bundle. One of us also discussed how some aspects of this work
can be carried over to the more general situation of nonlinear constraints [26,27]. The
equations under consideration then are of the form

éa:fa(t»qﬂ»qb,qﬁ) (X:l,...,k
q'azga(tvqﬂvqbaq.ﬁ) a=1,...,m.

In this earlier work, we saw how some of the constructions familiar from the
geometrical study of unconstrained second-order systems could also be defined in the new
situation. This is, in particular, the case for tdgnamical covariant derivativand the

Jacobi endomorphismwo concepts which play a key role in the geometrical analysis of
second-order dynamics (see, for example, [4,9, 14,23, 30]). A large part of our approach
to non-holonomic systems, though aimed at unravelling coordinate free properties, was
carried out on the basis of coordinate calculations. A more geometrical and comprehensive
construction of the basic ingredients would certainly, therefore, be of interest. It has
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moreover been observed in [7] that the dynamical covariant derivative is just one component
of the covariant derivative operator defining some linear connection, and that the Jacobi
endomorphism is in fact a component of the curvature of this connection.

These are sufficient motivations for trying to put our earlier work in a broader
perspective. In doing so in the present paper, we will look at the picture from a slightly
different point of view. Rather than considering the non-holonomic constraints as given,
and the second-order differential equations as resulting from a larger system subjected to
these constraints, we shall instead start with a mixed system of coupled first- and second-
order equations treated on the same footing. There are indeed other applications which
could be modelled by such types of equations (see e.g. [17]) and which need not have
anything to do with the concept of constraints. The combined system of equations of the
general form displayed above will be shown to define a pair of related connections on a
fibre-product bundle, and the whole issue is to understand how this double structure can
be put to work to detect the appropriate geometrical tools for analysing the dynamics.
The most important of these tools is a collection of degree zero derivations, of which the
dynamical covariant derivative is only one component. Unlike the theory developed in [7],
however, the fundamental derivations will not all be of a covariant derivative type and
accordingly will no longer comprise a linear connection. They do give rise, nevertheless, to
corresponding exterior derivatives and associated tensor fields in much the same way as for
pure second-order equations. As well as unravelling the interplay between these geometrical
concepts, our further aim will be to apply this calculus to specific problems: as an example
we shall prove a generalization, directly in the appropriate framework and without relying
on coordinate calculations, of some theorems about adjoint symmetries which were initiated
in [28].

The structure of this paper is as follows. In section 2 we describe the geometrical
framework in which mixed equations are going to be studied, and introduce the associated
(nonlinear) connections. Section 3 deals with local frames adapted to these connections
and discusses their curvature. Some properties of more general situations where two such
parametric connections are available are developed in appendix A. In section 4 we examine
the extent to which a linear connection, which for pure second-order systems can be used to
generate the operators we need for our analysis, may also make an appearance in the present
situation. Section 5 is about exterior derivative operators obtained from the derivations of
degree zero introduced in the preceding section, and some aspects of the calculus related to
such derivations. In the final section we apply this calculus to the description of symmetries
and adjoint symmetries of mixed systems. Some further generalities about the nature of the
derivations involved are briefly discussed in appendix B.

Remark. The notations in what follows are usually chosen to correspond with those in
previous papers, but the present point of view will nevertheless require some changes.

2. The dynamical vector field and its two associated connections

Let E be the configuration manifold of a system, andrdet E — M andty: M — R be
fibrations; denote the composition of the two projectionshyet k+1 denote the dimension

of M andm the fibre dimension off — M. We shall consider the pull-back manifold
7*J1ty and denote its two projections y: 7*Jltg — E andny : w*J1tg — Jlto. The

type of differential equations we are going to study can most directly be viewed as being
given by a vector field™ on 7*J'r, satisfying the conditions thaf, dr) = 1 (wheret

is the coordinate ofR) and thatS(I') = O (whereS is the vertical endomorphism from
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J1ro transported tor*J11p). This is very similar to the framework described in [27, 28],
the essential difference being that in the earlier work we considered a section of the bundle
Jity — n*J'ry as given, and took to be defined instead on the image of that section,
which is of course diffeomorphic ta* J1z.

Let coordinates onE be (z,9% ¢*) and those onM be (¢,¢9%). The vertical
endomorphism oz is

S=(dg* —¢*dt) ®

g
and the conditions satisfied ly restrict it to have coordinate representation

=244 % g gt dt ) 0
=g TG e aD T u

8q'

—+ f*t.9", 4", 4"

As in [27], several connections arise in this situation. One way to discover them, as we learn
from the standard treatment of second-order dynamics ([6, 8, 16]) is to study the eigenspaces
of the tensor fieldCr-S. One readily verifies here that this tensor field hdasdimensional
eigenspace corresponding to the eigenvalle anotherk-dimensional eigenspace with
eigenvalue+1, and an(m + 1)-dimensional eigenspace (containifig with eigenvalue

0. Comparing this with the usual situation as described (for time-dependent systems) in
[8], one is led to think of the first eigenspace, complemented Wittas characterizing
‘horizontality’. There seem to remain then two different sorts of complementary vertical
spaces, one of dimensignand another one of dimension, corresponding of course to

the fibration of E over R in two stages. To be specific, there is a connectionn the
bundlern; : 7*J1tg — J11o with a vertical projector which we shall denote by secondly

there is a connectiory on the bundlep : 7*J'tg — E with a vertical projector which

we shall denote by?". The tensor fieldV measures the deviation from ‘unconstrained’
second-order systems and is defined by

N=1—(LrS?—dt®T.
PV can then be written as
PV =3I +LrS—N—-d®T).

It is straightforward to check thav? = N and (P")? = P", and that ImV = Vx; and
Im PV = Vp. In coordinates,

3
N = (dg“ — Bydg” — (¢ —¢"By) d) ® g

a
PV =(d§* +T5dg’ — (f*+4’THd) @ —
ag®
where the coefficient8; andI'; are given by

Ba= aga l—wzz_}@
a g B 2 qﬁ

the sign ofl'§ is chosen to be consistent with previous work in this area.
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In this framework, the pull-back manifold*J'z, is of course just the fibre product
E xy J'to. The connectionss and x share a quite remarkable property: they are
connections on one of the factors of the fibre product, parametrized by the other. To
elaborate on this, observe for example thatviewed as a section af'7; — 7*Jrg
and with obvious notations for the fibre coordinates of this fibration, is determined by
the relationsg? = g* — ¢*BjS, q5 = B, q2 = 0 (as may be seen from the coordinate
representation o). This means that actually takes its values ifir x p n*J1to and
so defines a mapg : n*Jltg — Jim. A perfectly symmetric situation applies to the
connectiony on the bundlep : 7*J1tg — E as may be seen from the lack afdterms in
the coordinate expression f@". The general situation of two such connections on fibre-
product bundles is described in appendix A. It is shown there how the given connections give
rise to a third ‘diagonal’ connection and how the curvature of this induced connection relates
to the curvatures of the original ones. In the present situation the ‘diagonal’ connection is
a connectiork onm o p : w*J1tg — M, with horizontal projectorP” =1 — N — PV.

For completeness, we end this section by making explicit the link with the geometric
picture underlying our previous publications in this area [27, 28]. (letjly) represent an
arbitrary point in*J'ty, wherey is a curve inM such thatr(p) = y(¢), and consider
the points (p, jly) € J'n. Let¢ : M — E be such thatj} ¢ = 5(p, jly), i.e. we
have 09 /9t = g* — ¢*BY, 3¢“/3q* = BS. Then jl(¢ o y) is a point in Jir; and,
carrying out this construction for each pointsrfJlz, it is clear that we obtain a section
of J1ry — n*J17. In [27,28], we took the imagéd?! of this section to be our evolution
space. Whereas this is the right space to look at when we think of non-holonomic systems
and want to relate, for example, a free Lagrangian system living ‘am with its reduced
dynamics on the constraint submanifofet,J 11y is the more natural environment when the
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starting point is a general mixed system of first- and second-order equations. Since both
spaces are diffeomorphic, we are uspnthis time to denote the projection af J 1, (rather

than J1) onto E and we are now ready to enter into an analysis of interesting operations
and tensor fields along.

3. Vector fields alongp and frames adapted to the connections

Solutions of the given mixed system ot J1ry will be curves inE, and studying the
properties of such curves will therefore give rise in a natural way to maps frowtzg
to tangent vectors t&. This is why, having the calculus adapted to pure second-order
equations in mind [21, 22, 30], we are now led to single out the fibradtioAssociated with
each mixed systemlm as defined above, there is a ‘total time derivative’ vector field along
p defined byTr =TpoT:
d ., 9 .0

Tr = E‘i‘q aqa +g aq“
As in the general situation described in appendix A, the connectiomefines a
decomposition of each vector fielalongp, although here the presence of the distinguished
vector field T allows us to carry the decomposition a little further. In general, we may
write X = X + X, but here we may also pi = (X, dr)Tr + X, and as(X, dr) = (X, dr)
we have

X =(X,d)Tr+ X + X.

We will denote theC®(r*J1tg)-module of vector fields alqng) by X(p) and the
submodules corresponding to the above decompositionstiy), X(p) and X(p)
respectively. Notations such &, X, ¥, ... will always refer to vector fields along,
belonging to the corresponding submodule.
A local basis forX (p) is given by
d 0 d

T Xy = + B :
r bl + B dq* dg“

Tr and X,, by the way, are the horizontal lifts, via the parametric connedciipof the
local basis of vector fieldsT(= 9/dt + ¢#3/9q”, 9/3q%) along the projectionr o p. For
a generalX along p, we have

_ - 0
X =£&%X, X =& .
ag®

The dual basis fon'(p), the set of 1-forms along, is given by
dr 0% =dg* — ¢* dr n® =dg“ — g“dr — BSO*.

By analogy, we denote the submodule spanned by thiey Al(p), and the span of theg®
by A'(p).

For a local frame of vector fields on*Jry, adapted to the connections and to the
vector fieldI", we must keep track of two kinds of verticality, spanned by vector fields
which we denote by, andV,, respectively; we denote the remaining basis of horizontal
fields by H,. A suitable basis is therefore given by

d ad ad

r H,=-— + B® S v—a V, =
T 8ge T %aqe Y agP “ o
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and the dual basis of 1-forms ariJ 17, is
dr 0” n“ ¢% =dg* — f*di + T30
With respect to these bases, we have
PP=di®@I+6“®H, P '=¢"®V, N=n'0V.

For computing local expressions (such as components of the Nijenhuis tensors of the various
projectors which are relevant here), it is very helpful to have relations for the brackets of
these basis vector fields. The most useful ones are:

[Ha. Hg] = (Ho(B}) — Hp(B)V, — (Ho(T}) — Hp(T})V,

[T, H,] =TEHgy + W2V, + @ vy
where we set
®f = —(Ho(f*) = TIT, + T(TE) = —=(Xa(fP) + TETL + T(T))
W =T(B}) — Hy(¢") — TS B = T(B)) — X, (g").

We shall see in section 5 that these expressions are the components of vector-valued forms
alongp. Needless to say, these coefficients must be related to components of the curvature
of the connections involved. The curvature of a connection is often defined as being the
Nijenhuis tensor of its horizontal projector or, equivalently, the Nijenhuis tensor of its
vertical projector. We find that

o

. _ ‘ dBS
Ny =W5dt A 0P @ V. + 3(Hy(Bj) — Hg(BS)0* A 6P @V, — 8—,;9“ APP @V,
q

Npv = @) di AP @V, + 5(Ho(T)) — He(T}))6* A 6P @V,

arL  afr
0 — 2 _dr | A ®@V,.
+<8qb dq" > e

It is a general property of Nijenhuis brackets of type (1,1) tensor fields that
Npviny =Npv + Ny +[PY, N].

The left-hand side is nothing but the curvature of the ‘diagonal’ conneatioif one
computes all terms in the right-hand side, there are some cancellations, the mechanism of
which becomes clear from the general considerations in appendix A.

4. In search of a linear connection

In [27,28], the importandynamical covariant derivativ&/—a degree zero derivation of
the algebra of forms along the projectipr~was detected by looking at the decomposition
of the Lie derivative of horizontal and vertical lifts (of vector fields algmgwith respect
to I'. We know from the standard second-order theory, however, that there are other paths
leading to the definition of the same operator [30]. What is not clear at the moment is
that an attempt to generalize these different approaches to the case of mixed systems would
always lead to the same result. It is therefore important for our present purposes that we
try to see how the operat®r arises in a more fundamental construction.

The most interesting interpretation &f in the standard theory is as a component of
a general linear connection associated viithWe will briefly review this construction as
it was elaborated in [7] (following the earlier version of [20] for autonomous equations).
Another approach to the same linear connection has recently been developed in [32], while
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related connections on the full jet space wherdives were introduced independently in
[3,25].

To see how the construction works for pure second-order equations, let us restrict
our attention to the bundle, : M — R and its jet space/’ry, and assume we have a
second-order vector fieldy on J1zo. We then have a (nonlinear) connection on the bundle
oo : Jltg — M with horizontal projector

pHo — %(1 — Lr,S +dt ® Tp)

and there are horizontal and vertical lift operators mapping vector figldalong pg to
vector fieIdsXé’, XOV on J1t,. Each vector fieldZo on J1ty gives rise to unique vector
fields Zoy, Zoy along pg satisfying

Zo = (Zow)" + (Zov)¥
and Zoy can be further decomposed sy = (Z, df)T + Zoy, giving

Zo=(Z,d)To+ (Zow)" + (Zov)"
(Zoy, dt) = (Zoy, dt) = 0.

As in [7], we can define a linear connection phT M — J'zg by
Dz,Xo = [P™(Z0), Xg1v +[P"*(Zo), Xg'1u + P™(Zo)((Xo, d)T

for vector fieldsZ, on Jzg and X, along po.

The two essential properties which ensure that this construction does indeed define
a linear connection are first, that the dependenceZegris linear overC>(J'r), and
secondly, thatD,, acts like a derivation on th€>(J1z)-module of vector fields along
po. As a matter of fact, the first two terms in the above formula are the ones which make
the construction work in the case of autonomous second-order equations (see [20]); if one
carries them over to the time-dependent framework, the lineariiis preserved, but the
derivation property is lost and the third term is precisely the correction which is needed to
restore this property (while keeping the linearity 4g).

What we are after now is a ‘parametrization’ of this formula to obtain a linear connection
on the bundleo*TE — m*J'ty. One can verify that (as a first step in the parametrization
process) the formula still makes sense wiigris a vector field alongr; : 7*J 'ty — Jl1o,
with a suitable interpretation of the Lie bracket of such vector fields, ¥gds a vector
field alongpg o 71 : w*J1tg — M. It does not seem to be possible, however, to make the
formula continue to work in the present situation, the difficulty arising essentially from the
presence of two different kinds of verticality. What we did in our previous papers [27, 28]
was, in fact, to use only the connectighon p to obtain a splitting of vector fields on
n*J'ty into a horizontal and vertical part. This way, for example, the vector fi#lds
were part of the horizontal distribution. The analogue of the formulagiX, above then
needs a further correction to restore the derivation property, but this time the correction
unfortunately destroys the linearity in tii&-argument in an irrecoverable way. The ‘best
approximation’ to a linear connection can then be achieved by restricting the deviation from
linearity to the smallest possible part. For that purpose, it is necessary to make consistent
use of the threefold splitting ok’ (7 *J'1o) provided by the projection operators?, PV
andN.

From now on, we distinguish three lifting operations frotitp) to X (7*J1w): as
shown in appendix A, the connectignmay be used to give horizontal and ‘diagonal’ lifts,
while in this context we have a vertical lift as well. We may summarize the effects of these
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lifts in the following:

P H

T =T X" =H, ( ) =0
ag®
9 D

T2 =0 x)=0 (aqa) =V,
9 Vv

TL =0 XY =v, ( ) =0.
8qa

Any vector fieldZ on 7*J'tg may now be written uniquely as the sum of three lifts:
Z=Zn" +Zp)" + 2"

Here, Zp is fixed by requiring it to be vertical with respect to the projeciar Zy is
horizontal with respect to the parametrized connecjiorand so isZy, with the additional
restriction that{Zy, dt) = 0. In other words, referring to the considerations of the previous
section,Zy only hasX,-components, whileZ; may be split further as

Zy =(Z,d)Tr + Zy
where(Zy, df) = 0.

For later use, we also describe the dual process of lifting 1-forms adoteg1-forms
on *Jtry. Any 1-form onz*Jlrg is fully determined by its action ox”, XV and X?,
with X € X(p). Fora e Al(p), the three types of lifts ok are defined by

o (XM = a(X) " (XV) = a(X) a?(XP) = a(X)
all other components being zero. This gives rise to the following for the lifts of the local
basis ofAl(p):

(dn) = dr 0" =6* mH"=0

(dn' =0 @)Y =9¢* 0" =0

(d? =0 )’ =0 (P =n".

With the threefold decomposition of (7*J11p) now corresponding to the three lift
operations, we start our approach towards a linear connection by the provisional formula
which would work if we had no ‘diagonal parts’:

DX Z[PH(2). X"y +[PY(2). X"y + PH(Z)((X. dr)Tr.
This formula does not, however, represent a derivation. Indeed, we find that
Dz(fX) = fDzX = P2 (H (X v + PV (N X u + PH(Z) ()X, d)Tr

= (PT(Z)+ PV (2)(NHX

= -N)ZI)(NHX

=Z(HX-Z(HX - (NZ(H))X.

We shall remedy this deficiency by adding the ternds X”]p + [NZ, X"]x to our
provisional formula, giving a final definition of the derivatidy, as

DX =[P"(2), X ]y +[(PY + N)(Z), X"y +[Z, XP1 + P"(Z)((X, dt) Tr.

As anticipated above, however, this operatonas linear overZ, and so does not represent
a linear connection; we have

DizX = fDzX — X" (f)Zp
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which shows that the deficiency has been contained in the diagonal part. Another way of
looking at this deficiency is that the formula fbr; X would define a linear connection in the
usual way if we were interested in vector fields along the projectierp : 7*J1tg — M.

Again taking the theory of unconstrained second-order equations as a model and
thinking, more particularly, of the relation between the linear connection on the bundle
PgTM — J'1o and the fundamental derivations for the calculus alppgwe should now
discover the operations of interest for a calculus alpnigy splitting Z into its three (or
better four) components. Explicitly, the way to extract degree zero derivations on forms
and vector fields along from the derivationD; goes as follows. For an¥ andY in
X(p), we put

DyX = Dyv X DX = Dyn X VX =D{ X =DrX DPX = DyoX.

It is clear that ¥ and O/ are covariant derivative type operators: they depend linearly on
Y. For D on the other hand we have

DX =[Y?, X"y +[Y?, XP]p.

It follows that Df is covariant for its action ol (p), but rather acts like a Lie derivative
operator, when restricted t&(p). The extension of these derivations td(p) (and
subsequently to arbitrary tensor fields algrjgs achieved via the usual duality requirement:
D(X,a) = (DX, a) + (X, Da).

We shall use all four of these derivations in our development of the calculus along
so it is worthwhile, for the convenience of the reader, to summarize their effect on our
basis vector fields and differential forms in a complete table (table 1). With £2X,,

Y = £99/3q°, see table 1.

Table 1.
1% _ v v _ v 0 _
DyTr=Y DJX;=0 Dyw =0
ory 3B
H _ H _ B H 0 _ _ il
OYTr =0 DfXp="556 Xy D0 =k age
_ _r 8 __9¢ 9
VTr =0 VXp=T}X, Vaqb = aqbaaq”
DT — Dy, — p 3 _ 98 9
DPTr=0 DPXs=0 DY 35 = " agb 3g°
For 1-forms, see table 2.
Table 2.
Dydr=0 Dyof =—&fdi Dyn’ =0
DHd—0 DHof = g« rgr  pHyp = gedBl e
v = v = aqm )777 = 3qc
a,b
Vdi=0  Vef =-rLer Vb = ggcn"
b
DA _ DB _ D b_ _ 0E”
DPdr =0 DPof=0 DYy = aq“””

Finally, for functions onz*J'zy we have
Dy f=Y"(f) DY f = (Y, dn)T(f) + Y7 ()
Vf=T() DY f =YP(h).

vV =D{_will be called, as in previous work, the dynamical covariant derivative.
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5. Exterior derivatives and further aspects of the calculus along

In this section, we shall see how the curvatures of the two connecticensd y may be
characterized in terms of the calculus algmgThere are several good reasons for looking

at the manifestation of curvature in this way. Recall, for example, from the standard theory
of second-order systems [21, 22, 30] that the curvature, regarded as a vector-valued 2-form
along the projection on the base manifold (the mgjin the sketch of the previous section),
turns out to be entirely determined by a ty@de 1) tensor field®, the Jacobi endomorphism.
Here, though, we have two curvatures, and (as may be seen in appendix A) each splits into
two components. We might therefore expect to find four such tensor fields. This is not
quite what is going to happen and it will be instructive to discover that the differences can
roughly be traced back to the deviation of the operator from being a linear connection,

or in other words to the Lie-derivative component of the derivatidh D

For a start, it is obvious that vector-valued 2-forms cannot be obtained from vector-
valued 1-forms through derivations of degree zero, so we will have to explore first what kind
of exterior derivative operations have a natural existence in the present framework. After
introducing an exterior derivative corresponding to each of the D-derivations, firston
and then, inasmuch as this is possible, alsct@p) (and thus on vector-valued forms along
p), we compute the decomposition of the Lie brackets of the various lifted vector fields
on n*J1ty. The algebraic parts of such decompositions should be related to (and in fact
determine) the curvatures of the connectienand x: we find three vector-valued 2-forms
R; and one symmetric vector-valued 2-tensor fiéldalong o, which are shown to be in
one-to-one correspondence with the different componentg§yond NVpv. The d-parts of
the tensorsk; give rise to type(l, 1) tensor fields, which are in turn shown to determine
the R, completely. For the action on functions, sindBz[, Dz,](f) = Dz, z,(f), the
decomposition of the brackets just discussed tells us at the same time how the commutators
of the various D-derivations decompose. The above equality does not hold for the action
on vector fields: the difference between both sides would in faddifwere truly a linear
connection, define its curvature. We will not compute these curvature-like terms in all
generality here, but restrict such computations to the commutatovswaith DV, D¥ and
DP. Let us now develop this logical hierarchy of steps in some detail.

As usual, derivations of scalar forms (hex€p)) are completely determined by their
action on functions and 1-forms. Because of the covariant nature;cdrial DY, we can
define degree 1 derivatioms’ andd” by d" f(X) = Dy f = D} f andd” f(X) = DY f =
Dg’f for functions f € C®(xr*J'1) (with X € X (p) arbitrary), and for a 1-forna along
o, defined o, d¥a € A%(p) by

d"a(X,Y) = (Dya)(¥Y) — (Dya)(X)

d"a(X,Y) = (DYa)(¥) — (Dy &) (X).
It is easy to verify that these indeed have the tensorial properties of 2-forms, andl’that
andd”’ have the required derivation characteristics.

On the other hand, in view of the Lie derivative aspect iff,Dve defined? by
dPf(X)=DRf = Dgf and

dPa(X,Y) = (Dga)(y) - (D’;a)(X) — a(Dgi).

The covariant part of B helps to verify that this construction depengddinearly on X
andY.
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For practical purposes, we list the coordinate formulae for the exterior derivatives of
functions and 1-forms along. We have:

dV f =V (f)6° d" f =T(f)dt + Hy(f)6° dP f = V(f)n°
and table 3 for the actions on basis 1-forms.

Table 3.
dVdn) =0 dVe* =dr Ao™ d"n*=0
a a
df(dr) =0 dHQ"‘:fl"gdt/\Qﬁ dHn“=%thnb+%9“Anb
dP@n =0 dPe* =0 dPnr =0

Since we actually have exterior derivatives of vector-valued forms in mind, we ought
to extend the action of these operations to vector fields atorigpossible. We may define

d"X(Y)=DJX d"x(y)=DlI'x d’X(Y) =DYX
where it has to be emphasised th#t can be defined only om?(,o), because of the

nonlinearity inY of the action of [$ on X(p). The coordinate expressions of interest here
(in a slightly different arrangement) are shown in table 4.

Table 4.

d"Tr=0"®X, dHiTr=0 dPTr =0
ar’y

d"Xy =0 d¥X, =TEdi @ Xp + 3q§ 0f @ X, d’Xx, =0

Vo _ w0 \_ 08 4o 8 _0Blao B _

g =0 ¢ (361“)_ aq“ dt@aq” ag" ? ® 3’

To see a manifestation of the curvatures at the level of the calculus alamge has to
compute Lie brackets of the various types of lifts of vector fields alonyVe repeat that
the main idea behind such computations is that relevant operatiods(enwill become
apparent by looking at the decomposition of the resulting vector fields *oftry. Such
a procedure in fact could be used to define fhalerivations to some extent, while the
curvature components are expected to make their appearance in the algebraic parts of the
decomposition.

It is appropriate to introduce the following bracket operations on the various submodules
of X(p):

[X,Y]y = D)Y(Y - Dgf(
[X.Y]y =D!Y - DIX
[X.Y]p =D2Y - DY X.
A straightforward calculation then yields the following results:
(X", Y'] = (X, Y]v)"
[XP, 7] = (X, ¥1p)”
[X".¥YP] = (DyY)” — (DL X)”
[X7, 7] = (X, Y1m)" + (Ri(X, )P + (Ra(X, ¥))"
[XP, 7" = @2V — (DY X)P + (Re(X, V)"
[X¥, V"] =@y — O %)Y + (G(X, ¥)".
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As expected, curvature components arise when the distributions are not integrable, i.e. when
‘horizontal’ vector fields are involved. The tensor fielfls, R, and R3; are vector-valued
2-forms alongp. Less expected is thaE on the other hand is a symmetric vector-valued
2-tensor. The coordinate expressions of these tensor fields read as follows:

Ri=WSdt A6 ® 9 + L(H,(BS) — Hy(B)o* A 0P @ 9
1= % ch 2\ a2 B\ Py a c

aq°¢
Ry =@y dr AOP @ X, + 5((Hy(Ty) — H(T)))0* A 0P ® X,
afY , ary ,
R3=—a—qbdtmy ® X, + 8qb9a/\;7 ® X,
9%g" 9
G = 0% @ 6°
9G2dgh e dge

The relationship between these tensors and the curvatjyeand v is now obvious. A
kind of vertical lift of R, + Rz gives Npv. The same procedure applied B gives rise
to the first part ofAy. The relationship between the second part\§f and G is more
subtle: it is of the same type as the so-calleghlér lift which relates a symmetric tensor
field determined by the Hessian matrix of a Lagrangian to the P@rCartan 2-form. We
refer to [22] and [30] for this construction and do not elaborate on it further here.
Observe in passing that the two different meanings we have given to vector fields
carrying a subscripV, D or H (one for the decomposition of vector fields a1/, and
one for brackets of vector fields along) are consistent. Indeed we see from the above
relations that X, Y]y = ([XV, YV])y and likewise for the other two notations.
We are now ready to define three typk 1) tensor fields which are obtained simply
from the d-part of the curvature tenso®;. Explicitly, let ¥ = it Ry, ® = it.R2 and
A = it.R3. The components oV and ® were already listed in section 3, but we repeat
the full expressions here because of the importance of these tensor fields:

W = (I'(Bj) — Xp(g)0" ®

agq°
® =—(C(T)) + Xp(f") + T30’ @ X,
afr
= ag" &%

One of the striking features of these tensors is that they actually determine the curvature
2-forms R; completely. Indeed, it is fairly easy to verify in coordinates that:

Ry= 3@ ¥ +d AW)
Ry = 3(d" @+ 2dr A D)
Rz = 3(d"A+2dt A A).

Remark. The tensor fieldb defined in our earlier work ([27, 28]) was in fact the sum of the

® and A which are introduced here. The analysis of the next section will illustrate that the
present option is more appropriate, but a sufficient argument for choosing it would be that
the non-zero parts of the coefficient matrices of the two tensors have different dimensions.

The next step which one logically makes in building up a calculus alpnig to
look at the commutators of the fundamental degree zero derivations introduced in the
previous section. In fact, the above bracket relations already carry the information for
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these commutators inasmuch as their action on functions is concerned. Indeed, it follows
from the definitions that on functiong we have:

[D%.D71(f) =Dz g, ()
[DF.DY1(f) =Df; 5, ()
[D5. DF1(f) = (Ogy; = Ppo) ()

H H _ H D %4
[Df,DI1(f) = (D[ff,m + DRl(X’?) + DRZ(”))(f)

[DF. DY1(f) = (Ogy; = Dgug + Dig 5.5
[D§. DY1(f) = (Ogy; = Dpus +Dg . 3) ().

In appendix B, building on our experience for second-order systems, we sketch a few
aspects of what a complete theory of derivations of forms ajpmguld tell us about their
canonical decomposition. It would follow from such a theory that the difference between
the two sides of each of the above relations among degree zero derivations (when they are
allowed to act on vector fields and forms as well) can merely be an ‘algebraic derivation’, i.e.
a derivation vanishing on functions. Such a derivation (of degree 0) is determined by a type
(1,1) tensor field, sayQ, and then written ago. Its action on vector field§/ € X (p) or
1-formsa € Al(p) is given by Q(U) and —Q(«) respectively. So, to complete the picture
about commutators of D-derivations, all that needs to be done, in principle, is to compute
the Q. y tensor for each case.

In fact, there is a lot more that can be said about these tensors. As we learn from
[7], if the founding father of the D-derivations, i.e. the operatibp introduced in the
preceding section, really had been a linear connection on the bghflle — 7*J1o, then
its curvature would be defined by cW#, Z,) = [Dz,, Dz,] — Dz, z,)- This implies that
the different tensor field®x y we are talking about here would essentially constitute the
components of the curvature of this linear connection. In the present situ@tjorfialls
short of defining a linear connection. The effect of the deviation from a linear connection
is that the tensor field® x y will not in all cases depend tensorially gh andY as well:
sometimes derivatives of the componentsXofand Y will be involved. For the first two
commutators in the above list there are no terms of fypei.e. the correspondin@-tensor
is zero. Computing th@-tensors for the other cases is a rather messy enterprise and so we
will abstain from it in the general case. We will instead pay more attention to the special
case where one of the operands in the commutator is the dynamical covariant derivative
V= D?r. Incidentally, it is possible to obtain all such commutator relations in a coordinate
free way by using the Jacobi identity, applied to suitable combinations of derivations. Often,
however, the result will follow more quickly from a coordinate calculation.

The following results are obtained:

Vi _  H %
[V.Dgl = —D5 + Dyx

D] _ D %
[V.D3] =Dg; + DA()"() + e

HY _ NH v D
[V.Dgl=Dgg + Dq>()2) + Dxp(f() + 1o

where the(l, 1) tensorng and Qg are given by

D =igRg—ind"X

0 =2i3R, —DY® — 2(Xd)® +i3E+ W od”R — Ao (R]G).
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Here B is a vector-valued 2-form along, which can be constructed out 6f and A:
EX,Y)=(AlG)(X,Y) — (A]G)(Y, X).

In coordinates:

3 Y 9B
f 29 A pb @ .
8qb aqY dq°

6. The calculus alongp at work

In this section we wish to develop, as an application of the basic intrinsic operations which
have been introduced so far, a theory of adjoint symmetries for mixed first- and second-order
equations. The idea will be that, with the most essential tools at hand, everything else should
follow without needing to use coordinate expressions. Infinitesimal generators of symmetry
transformations of differential equations are more familiar than adjoint symmetries, so we
shall first derive the characterization of symmetries within the framework of vector fields
along p (which is the most economical way for writing the determining equations in a
coordinate free way), and then proceed to the theory of adjoint symmetries by duality.

Let Z € X(7*J't) be a dynamical symmetry of the given dynamics As usual,
two symmetries should be regarded as equivalent if their difference is a multigie of
This means that we can concentrate, without loss of generality, on a representative of the
class for whichLrZ = 0. Such a representative will not havd’acomponent so that, in
accordance with the general discussion of sectio& 4yill have a unique decomposition
of the form

Z=X"4+XxP4+7"
for someX, X, ¥ € X(p).
From the brackets of lifted vector fields computed at the beginning of the previous
section, in the special case where one of the vector fieldis=sT?, we obtain
LrXY =-x" vx)¥
Lr X" = (V)T + 9 (X)P + o (X)”
LrXP = (V)P + AX)Y.
It now follows that£rZ = 0 is equivalent to specifying that = VX, and requiring thak
and X must be solutions of the mixed first- and second-order partial differential equations
VZX + d(X) + AX) =
VX +W(X) =
Essentially, therefore, looking for a symmetry means looking for a vector Ketd.X'(p),
of the formX = X + X, satisfying the above two conditions. Note thb{X) = d(X),
A(X) = A(X) and ¥ (X) = ¥(X), and also that the left-hand side of the first equation

takes values int(p), whereas this ist'(p) for the second equation. As a result, the two
conditions can equivalently be cast into the single condition

VZX + VX 4+ (P 4+ A +U)(X) =

The dualization of this picture is easily obtained using the standard procedure by which
one defines the adjoint of a linear partial differential operator. Hence, we adopt here the
following definition for the concept of adjoint symmetries.
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Definition. An adjoint symmetry ofl" is a 1-forma € Al(p), of the forma = & + & =
agf? + c,n’, satisfying

V2@ — Va + (& + A + W) (a) = 0.
It is easy to see, for instance from the coordinate expressions, that the submetiyles
andf\l(p) are invariant unde¥ and ®. On the other handA hasf\l(,o) in its kernel and

mapsf\l(p) into 7\1(/)), whereas¥ does the reverse. As a result, the single condition of
the definition is equivalent to the two conditions

V%@ + & (@) + ¥(@) = 0.

—Va + A(x) =0.

Observe that, in [27, 28], the adjoint symmetry condition did not split into two separate
conditions; this was due to the fact thit+ A was regarded there as a single tensor (called
®). It is clear that the present situation is more elegant, if only because of the similarity
with the picture for symmetries. Comparison with the line of approach adopted in [28]
shows that, ife is an adjoint symmetry of, then¢ = a + a® — (Va)” will be aT-
invariant 1-form onz*J1zy with T in its kernel. More strongly, one can show that this
formula establishes a bijective correspondence between 1-fprsasisfying the conditions
Lr¢ = 0 andir¢ = 0, and adjoint symmetries in the sense defined here. Hence, in
particular, all first integrals of the system should correspond to certain adjoint symmetries,
and these will be of the forrd” F + d? F for some functionF.

When we wish to substitute am of this form in the adjoint symmetry condition, it
is clear that we will need to know how the dynamical covariant derivaliveommutes
with the exterior derivatives. Since the exterior derivatives were defined in terms of the
D-derivations, it is fairly easy to obtain this information from the commutator relations for
[V,D}], [V, Dg] and [V, D)f(’]. We limit ourselves to the action on scalar forms algng
From the defining relation of"«, for example, we find:

vd"a(X,Y)+d"a(VX,Y)+d"a(X,VY) = (D{Va — D¥a + DY a)(Y) + Dia(VY)
—(Dy Va — Do + DJ;a)(X) — Dya(VX).
Subtracting
d"Va(X,Y) =D} Va(Y) — D} Va(X)
it then readily follows that, om(p),
[V,d"1=—d" +dt A V.
The other two commutators are somewhat more involved; we obtain (see appendix B for
notations)
[V,dP] =d) +ig, — 20t Nip
[V.d"] =dg +df +2ig, — 20t Nig — iz.
If one were to extend these commutator relations to vector-valued forms (whenever that
makes sense), there would again be additional algebraic terms arising. We shall, however,

not need these extensions for our present purposes.
Now let o be an adjoint symmetry for whick = d¥ F anda = d”F. Then

Vd'F =d"VF —d"F + (VF)dt
from which it follows, applyingV again and using the commutatdr [d7], that
V2d"F =V(d"VF + (VF)dt) —d"VF — &(d" F) — ¥(d"F).
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Putting L = VF, we conclude that the second-order requirementefdo be an adjoint
symmetry is equivalent to:

d"L =vV(@"L+ Lad).
Similarly, the first-order condition is found to be equivalent to
d’L =0.

In coordinates, the first condition says thatVs(L)) = Xg(L), but the right-hand side, in
view of the second condition, reduces further. Altogether we obtain

oL oL .. 0L
r - = with — = 0.
9g” 9q® dq®

Therefore, provided that the Hessian matvixV, (L) is regular, the conclusion is that the
right-hand sidesf® of the second-order equations do not depend ongtheoordinates

and that these equations actually come from Euler—Lagrange equations. It is easy also to
formulate a converse statement, so that we arrive at the following theorem.

Theorem. If T has an adjoint symmetry of the form= d"F + d”F, and if V4V, (L)

is regular (wherel. = VF), then the second-order differential equations coming fiom

are decoupled from the first-order ones and are the Lagrange equations with Lagrangian
L. Conversely, if the second-order equations are Lagrange equations with a Lagrangian
L(t, g%, ¢?) of the formL = V F for some functionF € C*®(n*J'1p), thena = dV F+d°F

is an adjoint symmetry.

This result is of course not quite the one which was predicted when we referred to
adjoint symmetries related to first integrals. Let us see now how the generation of first
integrals is in some sense a particular case. What is already obvious from the preceding
analysis is that for any first integrdl with VF = 0, the 1-formd" F + dP F is an adjoint
symmetry. Conversely, however, the situation may be more complicated, since a Lagrangian
L = VF (which is not regular) may be a first integral in disguise through the customary
gauge freedom. We have seen above thatfer d" F,

Va+d"F=d"L+ Ldt with L = VF.
The right-hand side is like a Poiné&Cartan form

L
0, = 07+ Ldr.
L Y +
When L is a total time-derivative of some functigf, this necessarily has to be a function
on M, and an easy way to express this is to say #hategarded as a ‘semi-basic’ 1-form on
n*J11g, is exact (or closed for local results). We therefore come to the following statement.

Theorem. Let @ = dVF + dPF be an adjoint symmetry of', such thatva + d” F,
regarded as 1-form on*Jlr, is (locally) of the form ¢¢. ThenF — £ is a first integral
of I". Conversely, every first integral can be obtained through such a procedureis i&
first integral, thend” F 4+ dP F is an adjoint symmetry.



Mixed first- and second-order equations 4047

It is worthwhile highlighting a quite striking feature of these results. Compared to the
standard theory of second-order equations, the second theorem is the type of result one
expects: it produces a general mechanism by which first integrals can be generated, and
this mechanism is likely to reduce to the more familiar relationship between symmetries and
conservation laws (Noether's theorem) whenever the given system of differential equations
is self-adjoint (cf [29]). The situation covered by the first theorem, however, is less
expected, because it first of all creates circumstances in which the second-order equations
are decoupled from the first-order ones, and then the additional statement is that the second-
order equations will be of Lagrangian type.

Acknowledgments

This research was partially supported by NATO Collaborative Research Grant No
CRG 940195. WS and FC further thank the Fund for Scientific Research, Flanders, Belgium,
for continuing support.

Appendix A: Connections on fibre-product bundles

Suppose we have two bundlgg : Y — M andvy : Z — M over the same base manifold.
We may consider the fibre-product manifdfdx ,, Z, and the projections of this manifold
onto its components define two further bundlesY x, Z — Y andu : Y xy Z — Z.
We shall be interested in connections defined on these two new bundles, and the way such
connections interact with each other. (For the situation described in the main body of the
paper, the base manifoltf has an additional fibration ové®, Y and Z are the manifolds
E and Jt, respectively, and their fibred product ovef is 7*J1z,.)
In general, a connection on (say)is a section of the first jet bundl&tyn — Y x,, Z.
In the present situation, though, we may define a distinguished submagqifgid, of J1u
and consider only those sections which take their values in this submanifold. To construct
the submanifold, consider those (local) sectign®f u which are ‘projectable’ tqug, in
the sense that there are corresponding sectignef o satisfyingyoovg = v o . We
shall define(J1u)o as the submanifold of jetg}l/f admitting a representative section which
is projectable: it is clear that this submanifold has a natural identification Jwithy x ; Z.
We shall call a sectiom of Jlug x) Z — Y x, Z a projectable connection om: the
name is appropriate because the composition &dllowed by projection on the first factor
of Jlug xy Z gives a magr : Y xy Z — Jlug which is rather like a connection qug
parametrized byZ. Conversely, starting frord we may recovew in full by specifying
that the second component of the image should be given by the identify on
Now suppose we have two projectable connectiorend x on i andv, respectively.
As the connections are projectable, we may combine them to give a conneciion
the composite bundlé. = voou : Y xy Z — M, using the natural identification of
JA with the fibre product/iug xu J1ve: we just specify that should be given by
k(x,y,z) = (6(x,y,2), x(x,y,2)). Conversely, starting witlk, we may obtains and x
by projecting on the first and second factor, respectively, and hence reccamed .
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Jro xpr Jlvg = J1A Y X J 1o
\
1 1 H
Juw D J o xu Z Y xuZ Z
o
v v Vo
5 A
Jt Y M
o o

In terms of the horizontal and vertical tangent vectors associated with each connection,
we find that

Horx = Horo N Hor x
whereas

Horo = Hork @ Vv
Horx = Hork @ V.

Take local coordinate system$ on M, (x*, y*) onY, (x4, z%) on Z, and (x4, y?, z%)
onY x, Z. The horizontal projector of a general connectioron . would be given in
these coordinates by

d ad d ad
PHdeA doz
p ®<8A+0A8 )+Z®(8“+“8y)

but if o is a projectable connection then the coefficiesfsall vanish, so that

ad a a
H _ 4. A
P(7 =dx ®<8A+UA8 )+dZ ®ﬁ

Similarly

a

d 0
H A
PX = dx ®<8A+XA8 )

and we also find that

0 ad 0
PH — dxA 7 a Y a 7 )
« ®<8xA +UA8y" +XABZD‘>
These formulae become easier to read if we use bases of vector fields and differential forms

adapted to the connections, rather than the coordinate bases. For the basis of vector fields
we shall use

dye’

a a a d

I I,
e TGy T X 9y 9z¢

Hy =
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and for the dual basis of forms we shall use

dx? n* =dy* — o} dx4 ¢% =dz% — x3 dx4.
The formulae for the horizontal projectors then become

9
Pg”:dxA®HA+¢“®a—Za

Pl =de" @ Hy+ 1" ® —
dy

PH = dx* ® Hy
so that
Pl +PY +P) =1

where P, va are the corresponding vertical projectors.

We may also consider the horizontal projectors of the ‘parametrized connecti@msl
x-. These will be tensor fields alongand i, respectively, and in coordinates &n Z will
be given by

d d
PVH — dxA Q[ — a
v <8xA 94 8y“)

ad 0
Pf:dxA®<M+xf{aZa>.

We shall be particularly interested in using these connections to decompose vector fields
and curvature tensors. It is clear that any vector fieldvor,, Z may be written as the

sum of three components by using the decomposition of the identity tensor given above.
We shall, however, be more concerned with vector fiesldalong the projection, and the
parametrized connectiah may be used to split such a vector field into two componants

X according to the rule

X, = (P, (X,) X, = (P)),(X,)

at each poinpp € Y xy Z.

We now have three vector fields alomg the original oneX, and its two components
X, X which are, respectively, horizontal and vertical with respeat tdBut to any vector
field alongv we may apply the horizontal lift defined by the other connectigrgiving a
lifted vector field onY x,, Z. We shall denote the-horizontal lift of X by X, and the
x-horizontal lift of X by X°. The reasoning behind the notation is th&l is horizontal
with respect to botly and x (and hence, also, with respectstd whereasx? is horizontal
with respect toy but vertical with respect te, and so may be thought of as ‘diagonal’. In
coordinates, if

o 9 o
X=§A<8XA+O’A >+§

ay“ ay“
then
e Pt B S P
dxA AQya dy?
and
X" —erH, xP = g@ 9
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We can see a similar phenomenon when looking at the curvatures of the three
connections: each splits naturally into two components. Calculating the Nijenhuis tensor of
the horizontal projector of, we find that
d doé d

+ B ¢a A de Q ——
dy4 0z7% dy

1
N, = 5 (Ha(op) — Hy(0})) e Ade? ®
=N, + N,

where N, = PXVJ/\/(, and/\Z, =N, —N,. The relationship between the three curvatures
may then be given by the formula

N, =N, + N,.

It is interesting to note that, whereas the connectiomompletely determines the two
projectable connections and y, it is not the case that the curvature jofdetermines the
curvatures o and x: two curvatures are always needed to determine the third.

Appendix B. Derivations of forms along p

For the general definition of derivations of scalar and vector-valued forms alomwg refer
to the similar concepts along the tangent bundle projection in [21]. Following the pattern
of the standard theory of Bhlicher and Nijenhuis [13], one is naturally interested in a
classification of such derivations. We give a sketch here of how this works in the present
situation, without giving any proofs.

If L € V"(p) denotes a vector-valuedform alongp, the meaning of the derivatian,
of degreer — 1, is familiar. We will denote byi), d? andd} the derivations of degree
r obtained via the commutator @f and the exterior derivatives defined in section 5. In
fact, each of these derivations will be relevant only wHemakes values int(p), X(p)
and X'(p) respectively. We will denote this by the corresponding symboLon

One can prove that every derivati@nof A(p) has a unique decomposition in the form:

D=iL1+szZ+df3+dZ~

Looking for such decompositions is one of the ways by which derivations can lead to the
discovery of new tensor fields. We illustrate this by investigating the decomposition of the
commutators of the exterior derivatives. For a start we have

dVod" =dt AdY d?odP? =0
and
[d",d°]=0 [@",d"] =o0.

It will not be a surprise that curvature components arise when we look at the remaining
commutators involving/¥’. We obtain

[dH, dD] = _idt/\R3 + dX3
d" od™ = 3[d", d"] = —igvpes +dR +dy,.

Here, the apparently new vector-valued 3-foErturns out to be derived from the vector-
valued 2-formE introduced in section 5:

T =2d"E+dABE).
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In this respect, it is also worthwhile to observe the following properties ofRh&nsors
which are easily obtained from their expressions in terms of(1hé) tensors¥, ®, A:

d'Ri=0
d"R, = —dt A Ry
dvR3 = —dr A Rs.

We do not enter into the extension of these derivations to vector-valued forms as they are
not always defined on the complete $&tp0). The situation is different when it concerns a
derivation of degree zero, as such a derivation can always be extended to vector fields (and
then to all tensor fields) by the duality rule.

Let D be an arbitrary derivation oi\(p) of degree 0. According to the general
decomposition result, we know that there exist vector fieldy, Z e X(p) and some
L, € V(p), such that

D =iy, +di +dj +d7.

Now, from the definition of the exterior derivatives we easily obtain thatfer Al(p),
(dyw)(Y) = (Dyw)(Y) + w(d" X(Y)).

A similar property holds foe[/, but the situation is different fa#”, where one finds
d? =D2.

It follows that
D =D} +D{ +D? —ip,

with —Q = L1 +d" X +d"Y not depending orZ. If we next extend the action ab by
duality, the term—i, (which vanishes on vector fields by definition) is replaced by, &gy,
an algebraic derivation vanishing on forms and acting on vector fieldg &%) = Q(X).

It follows that every self-dual derivatio® of degree O has a unique decomposition into
four self-dual components, namely

Vv H D

with iy = ag — ip. The algebraic derivatiop, vanishes on functions. Therefore,
once the action of a self-dual derivation of degree zero is known on functions, its complete
determination is a matter of finding the tygk 1) tensor fieldQ in the above decomposition.

This is the technique which has been used to describe, in section 5, the properties of the
self-dual derivations which are obtained through the commutators of the Bedérivations
introduced in section 4.
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