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Abstract. A geometrical framework is presented for modelling general systems of mixed
first- and second-order ordinary differential equations. In contrast to our earlier work on non-
holonomic systems, the first-order equations are not regarded here asa priori given constraints.
Two nonlinear (parametrized) connections appear in the present framework in a symmetrical
way and they induce a third connection via a suitable fibred product. The space where solution
curves of the given differential equations live, singles out a specific projectionρ among the many
fibrations in the general picture. A large part of the paper is about the development of intrinsic
tools—tensor fields and derivations—for an adapted calculus alongρ. A major issue concerns
the extent to which the usual construction of a linear connection associated with second-order
equations fails to work in the presence of coupled first-order equations. An application of the
ensuing calculus is presented.

1. Introduction

There has recently been a considerable amount of interest in the study of non-holonomic
mechanics (see [1, 2, 5, 10–12, 15, 18, 19, 24, 33] for a sample of geometrical approaches).
In our earlier work [28, 31] we considered the case of Lagrangian systems subject to linear
non-holonomic constraints, and we paid most of our attention to what could be called
generalizedČaplygin systems, which is the case where the constraints are generated by a
connection on an auxiliary bundle. One of us also discussed how some aspects of this work
can be carried over to the more general situation of nonlinear constraints [26, 27]. The
equations under consideration then are of the form

q̈α = f α(t, qβ, qb, q̇β) α = 1, . . . , k

q̇a = ga(t, qβ, qb, q̇β) a = 1, . . . , m.

In this earlier work, we saw how some of the constructions familiar from the
geometrical study of unconstrained second-order systems could also be defined in the new
situation. This is, in particular, the case for thedynamical covariant derivativeand the
Jacobi endomorphism, two concepts which play a key role in the geometrical analysis of
second-order dynamics (see, for example, [4, 9, 14, 23, 30]). A large part of our approach
to non-holonomic systems, though aimed at unravelling coordinate free properties, was
carried out on the basis of coordinate calculations. A more geometrical and comprehensive
construction of the basic ingredients would certainly, therefore, be of interest. It has
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moreover been observed in [7] that the dynamical covariant derivative is just one component
of the covariant derivative operator defining some linear connection, and that the Jacobi
endomorphism is in fact a component of the curvature of this connection.

These are sufficient motivations for trying to put our earlier work in a broader
perspective. In doing so in the present paper, we will look at the picture from a slightly
different point of view. Rather than considering the non-holonomic constraints as given,
and the second-order differential equations as resulting from a larger system subjected to
these constraints, we shall instead start with a mixed system of coupled first- and second-
order equations treated on the same footing. There are indeed other applications which
could be modelled by such types of equations (see e.g. [17]) and which need not have
anything to do with the concept of constraints. The combined system of equations of the
general form displayed above will be shown to define a pair of related connections on a
fibre-product bundle, and the whole issue is to understand how this double structure can
be put to work to detect the appropriate geometrical tools for analysing the dynamics.
The most important of these tools is a collection of degree zero derivations, of which the
dynamical covariant derivative is only one component. Unlike the theory developed in [7],
however, the fundamental derivations will not all be of a covariant derivative type and
accordingly will no longer comprise a linear connection. They do give rise, nevertheless, to
corresponding exterior derivatives and associated tensor fields in much the same way as for
pure second-order equations. As well as unravelling the interplay between these geometrical
concepts, our further aim will be to apply this calculus to specific problems: as an example
we shall prove a generalization, directly in the appropriate framework and without relying
on coordinate calculations, of some theorems about adjoint symmetries which were initiated
in [28].

The structure of this paper is as follows. In section 2 we describe the geometrical
framework in which mixed equations are going to be studied, and introduce the associated
(nonlinear) connections. Section 3 deals with local frames adapted to these connections
and discusses their curvature. Some properties of more general situations where two such
parametric connections are available are developed in appendix A. In section 4 we examine
the extent to which a linear connection, which for pure second-order systems can be used to
generate the operators we need for our analysis, may also make an appearance in the present
situation. Section 5 is about exterior derivative operators obtained from the derivations of
degree zero introduced in the preceding section, and some aspects of the calculus related to
such derivations. In the final section we apply this calculus to the description of symmetries
and adjoint symmetries of mixed systems. Some further generalities about the nature of the
derivations involved are briefly discussed in appendix B.

Remark. The notations in what follows are usually chosen to correspond with those in
previous papers, but the present point of view will nevertheless require some changes.

2. The dynamical vector field and its two associated connections

Let E be the configuration manifold of a system, and letπ : E → M andτ0 : M → R be
fibrations; denote the composition of the two projections byτ1; let k+1 denote the dimension
of M andm the fibre dimension ofE → M. We shall consider the pull-back manifold
π∗J 1τ0 and denote its two projections byρ : π∗J 1τ0→ E andπ1 : π∗J 1τ0→ J 1τ0. The
type of differential equations we are going to study can most directly be viewed as being
given by a vector field0 on π∗J 1τ0 satisfying the conditions that〈0, dt〉 = 1 (wheret
is the coordinate onR) and thatS(0) = 0 (whereS is the vertical endomorphism from
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J 1τ0 transported toπ∗J 1τ0). This is very similar to the framework described in [27, 28],
the essential difference being that in the earlier work we considered a section of the bundle
J 1τ1 → π∗J 1τ0 as given, and took0 to be defined instead on the image of that section,
which is of course diffeomorphic toπ∗J 1τ0.

Let coordinates onE be (t, qα, qa) and those onM be (t, qα). The vertical
endomorphism onJ 1τ0 is

S = (dqα − q̇α dt)⊗ ∂

∂q̇α

and the conditions satisfied by0 restrict it to have coordinate representation

0 = ∂

∂t
+ q̇α ∂

∂qα
+ ga(t, qβ, qb, q̇β) ∂

∂qa
+ f α(t, qβ, qb, q̇β) ∂

∂q̇α
.

As in [27], several connections arise in this situation. One way to discover them, as we learn
from the standard treatment of second-order dynamics ([6, 8, 16]) is to study the eigenspaces
of the tensor fieldL0S. One readily verifies here that this tensor field has ak-dimensional
eigenspace corresponding to the eigenvalue−1, anotherk-dimensional eigenspace with
eigenvalue+1, and an(m + 1)-dimensional eigenspace (containing0) with eigenvalue
0. Comparing this with the usual situation as described (for time-dependent systems) in
[8], one is led to think of the first eigenspace, complemented with0, as characterizing
‘horizontality’. There seem to remain then two different sorts of complementary vertical
spaces, one of dimensionk and another one of dimensionm, corresponding of course to
the fibration ofE over R in two stages. To be specific, there is a connectionσ on the
bundleπ1 : π∗J 1τ0→ J 1τ0 with a vertical projector which we shall denote byN ; secondly
there is a connectionχ on the bundleρ : π∗J 1τ0 → E with a vertical projector which
we shall denote byPV . The tensor fieldN measures the deviation from ‘unconstrained’
second-order systems and is defined by

N = I − (L0S)2− dt ⊗ 0.

P V can then be written as

PV = 1
2(I + L0S −N − dt ⊗ 0).

It is straightforward to check thatN2 = N and (P V )2 = PV , and that ImN = Vπ1 and
ImPV = Vρ. In coordinates,

N = (dqa − Baα dqα − (ga − q̇αBaα) dt)⊗ ∂

∂qa

P V = (dq̇α + 0αβ dqβ − (f α + q̇β0αβ ) dt)⊗ ∂

∂q̇α

where the coefficientsBaα and0αβ are given by

Baα =
∂ga

∂q̇α
0αβ = −

1

2

∂f α

q̇β

the sign of0αβ is chosen to be consistent with previous work in this area.
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In this framework, the pull-back manifoldπ∗J 1τ0 is of course just the fibre product
E ×M J 1τ0. The connectionsσ and χ share a quite remarkable property: they are
connections on one of the factors of the fibre product, parametrized by the other. To
elaborate on this, observe for example thatσ , viewed as a section ofJ 1π1 → π∗J 1τ0

and with obvious notations for the fibre coordinates of this fibration, is determined by
the relationsqat = ga − q̇αBaα , qaα = Baα , qaα̇ = 0 (as may be seen from the coordinate
representation ofN ). This means thatσ actually takes its values inJ 1π ×E π∗J 1τ0 and
so defines a map̌σ : π∗J 1τ0 → J 1π . A perfectly symmetric situation applies to the
connectionχ on the bundleρ : π∗J 1τ0→ E as may be seen from the lack of dqa-terms in
the coordinate expression forPV . The general situation of two such connections on fibre-
product bundles is described in appendix A. It is shown there how the given connections give
rise to a third ‘diagonal’ connection and how the curvature of this induced connection relates
to the curvatures of the original ones. In the present situation the ‘diagonal’ connection is
a connectionκ on π ◦ ρ : π∗J 1τ0→ M, with horizontal projectorPH = I −N − PV .

For completeness, we end this section by making explicit the link with the geometric
picture underlying our previous publications in this area [27, 28]. Let(p, j1

t γ ) represent an
arbitrary point inπ∗J 1τ0, whereγ is a curve inM such thatπ(p) = γ (t), and consider
the point σ̌ (p, j1

t γ ) ∈ J 1π . Let φ : M → E be such thatj1
γ (t)φ = σ̌ (p, j1

t γ ), i.e. we
have ∂φa/∂t = ga − q̇αBaα , ∂φa/∂qα = Baα . Then j1

t (φ ◦ γ ) is a point in J 1τ1 and,
carrying out this construction for each point inπ∗J 1τ0, it is clear that we obtain a section
of J 1τ1 → π∗J 1τ0. In [27, 28], we took the imageJ 1

σ of this section to be our evolution
space. Whereas this is the right space to look at when we think of non-holonomic systems
and want to relate, for example, a free Lagrangian system living onJ 1τ1 with its reduced
dynamics on the constraint submanifold,π∗J 1τ0 is the more natural environment when the
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starting point is a general mixed system of first- and second-order equations. Since both
spaces are diffeomorphic, we are usingρ this time to denote the projection ofπ∗J 1τ0 (rather
thanJ 1

σ ) ontoE and we are now ready to enter into an analysis of interesting operations
and tensor fields alongρ.

3. Vector fields alongρ and frames adapted to the connections

Solutions of the given mixed system onπ∗J 1τ0 will be curves inE, and studying the
properties of such curves will therefore give rise in a natural way to maps fromπ∗J 1τ0

to tangent vectors toE. This is why, having the calculus adapted to pure second-order
equations in mind [21, 22, 30], we are now led to single out the fibrationρ. Associated with
each mixed system0 as defined above, there is a ‘total time derivative’ vector field along
ρ defined byT0 = Tρ ◦ 0:

T0 = ∂

∂t
+ q̇α ∂

∂qα
+ ga ∂

∂qa
.

As in the general situation described in appendix A, the connectionσ defines a
decomposition of each vector fieldX alongρ, although here the presence of the distinguished
vector fieldT0 allows us to carry the decomposition a little further. In general, we may
write X = X̂+ X̃, but here we may also put̂X = 〈X̂, dt〉T0 + X̄, and as〈X, dt〉 = 〈X̂, dt〉
we have

X = 〈X, dt〉T0 + X̄ + X̃.
We will denote theC∞(π∗J 1τ0)-module of vector fields alongρ by X (ρ) and the
submodules corresponding to the above decompositions byX̂ (ρ), X̄ (ρ) and X̃ (ρ)
respectively. Notations such aŝX, X̄, Ỹ , . . . will always refer to vector fields alongρ,
belonging to the corresponding submodule.

A local basis forX (ρ) is given by

T0 Xα = ∂

∂qα
+ Baα

∂

∂qa

∂

∂qa
.

T0 andXα, by the way, are the horizontal lifts, via the parametric connectionσ̌ , of the
local basis of vector fields (T = ∂/∂t + q̇β∂/∂qβ , ∂/∂qα) along the projectionπ ◦ ρ. For
a generalX alongρ, we have

X̄ = ξαXα X̃ = ξa ∂

∂qa
.

The dual basis for∧1(ρ), the set of 1-forms alongρ, is given by

dt θα = dqα − q̇α dt ηa = dqa − ga dt − Baαθα.
By analogy, we denote the submodule spanned by theθα by ∧̄1

(ρ), and the span of theηa

by ∧̃1
(ρ).

For a local frame of vector fields onπ∗J 1τ0, adapted to the connections and to the
vector field0, we must keep track of two kinds of verticality, spanned by vector fields
which we denote byVa andVα, respectively; we denote the remaining basis of horizontal
fields byHα. A suitable basis is therefore given by

0 Hα = ∂

∂qα
+ Baα

∂

∂qa
− 0βα

∂

∂q̇β
Va = ∂

∂qa
Vα = ∂

∂q̇α
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and the dual basis of 1-forms onπ∗J 1τ0 is

dt θα ηa φα = dq̇α − f α dt + 0αβθβ.
With respect to these bases, we have

PH = dt ⊗ 0 + θα ⊗Hα PV = φα ⊗ Vα N = ηa ⊗ Va.
For computing local expressions (such as components of the Nijenhuis tensors of the various
projectors which are relevant here), it is very helpful to have relations for the brackets of
these basis vector fields. The most useful ones are:

[Hα,Hβ ] = (Hα(Bbβ)−Hβ(Bbα))Vb − (Hα(0γβ )−Hβ(0γα ))Vγ
[0,Hα] = 0βαHβ +9b

αVb +8β
αVβ

where we set

8β
α = −(Hα(f β)− 0βγ 0γα + 0(0βα )) = −(Xα(f β)+ 0βγ 0γα + 0(0βα ))

9b
α = 0(Bbα)−Hα(gb)− 0βαBbβ = 0(Bbα)−Xα(gb).

We shall see in section 5 that these expressions are the components of vector-valued forms
alongρ. Needless to say, these coefficients must be related to components of the curvature
of the connections involved. The curvature of a connection is often defined as being the
Nijenhuis tensor of its horizontal projector or, equivalently, the Nijenhuis tensor of its
vertical projector. We find that

NN = 9c
β dt ∧ θβ ⊗ Vc + 1

2(Hα(B
c
β)−Hβ(Bcα))θα ∧ θβ ⊗ Vc −

∂Bcα

∂q̇β
θα ∧ φβ ⊗ Vc

NPV = 8γ

β dt ∧ θβ ⊗ Vγ + 1
2((Hα(0

γ

β )−Hβ(0γα ))θα ∧ θβ ⊗ Vγ

+
(
∂0

γ
α

∂qb
θα − ∂f

γ

∂qb
dt

)
∧ ηb ⊗ Vγ .

It is a general property of Nijenhuis brackets of type (1,1) tensor fields that

NPV+N = NPV +NN + [PV ,N ].

The left-hand side is nothing but the curvature of the ‘diagonal’ connectionκ; if one
computes all terms in the right-hand side, there are some cancellations, the mechanism of
which becomes clear from the general considerations in appendix A.

4. In search of a linear connection

In [27, 28], the importantdynamical covariant derivative∇—a degree zero derivation of
the algebra of forms along the projectionρ—was detected by looking at the decomposition
of the Lie derivative of horizontal and vertical lifts (of vector fields alongρ) with respect
to 0. We know from the standard second-order theory, however, that there are other paths
leading to the definition of the same operator [30]. What is not clear at the moment is
that an attempt to generalize these different approaches to the case of mixed systems would
always lead to the same result. It is therefore important for our present purposes that we
try to see how the operator∇ arises in a more fundamental construction.

The most interesting interpretation of∇ in the standard theory is as a component of
a general linear connection associated with0. We will briefly review this construction as
it was elaborated in [7] (following the earlier version of [20] for autonomous equations).
Another approach to the same linear connection has recently been developed in [32], while
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related connections on the full jet space where0 lives were introduced independently in
[3, 25].

To see how the construction works for pure second-order equations, let us restrict
our attention to the bundleτ0 : M → R and its jet spaceJ 1τ0, and assume we have a
second-order vector field00 on J 1τ0. We then have a (nonlinear) connection on the bundle
ρ0 : J 1τ0→ M with horizontal projector

PH0 = 1
2(I − L00S + dt ⊗ 00)

and there are horizontal and vertical lift operators mapping vector fieldsX0 along ρ0 to
vector fieldsXH0 , XV0 on J 1τ0. Each vector fieldZ0 on J 1τ0 gives rise to unique vector
fieldsZ0V , Z0H alongρ0 satisfying

Z0 = (Z0H )
H + (Z0V )

V

andZ0H can be further decomposed asZ0H = 〈Z, dt〉T + Z̄0H , giving

Z0 = 〈Z, dt〉00+ (Z̄0H )
H + (Z0V )

V

〈Z0V , dt〉 = 〈Z̄0H , dt〉 = 0.

As in [7], we can define a linear connection onρ∗0TM → J 1τ0 by

DZ0X0 = [PH0(Z0), X
V
0 ]V + [PV0(Z0), X

H
0 ]H + PH0(Z0)(〈X0, dt〉)T

for vector fieldsZ0 on J 1τ0 andX0 alongρ0.
The two essential properties which ensure that this construction does indeed define

a linear connection are first, that the dependence onZ0 is linear overC∞(J 1τ0), and
secondly, thatDZ0 acts like a derivation on theC∞(J 1τ0)-module of vector fields along
ρ0. As a matter of fact, the first two terms in the above formula are the ones which make
the construction work in the case of autonomous second-order equations (see [20]); if one
carries them over to the time-dependent framework, the linearity inZ0 is preserved, but the
derivation property is lost and the third term is precisely the correction which is needed to
restore this property (while keeping the linearity inZ0).

What we are after now is a ‘parametrization’ of this formula to obtain a linear connection
on the bundleρ∗T E → π∗J 1τ0. One can verify that (as a first step in the parametrization
process) the formula still makes sense whenZ0 is a vector field alongπ1 : π∗J 1τ0→ J 1τ0,
with a suitable interpretation of the Lie bracket of such vector fields, andX0 is a vector
field alongρ0 ◦ π1 : π∗J 1τ0→ M. It does not seem to be possible, however, to make the
formula continue to work in the present situation, the difficulty arising essentially from the
presence of two different kinds of verticality. What we did in our previous papers [27, 28]
was, in fact, to use only the connectionχ on ρ to obtain a splitting of vector fields on
π∗J 1τ0 into a horizontal and vertical part. This way, for example, the vector fieldsVa
were part of the horizontal distribution. The analogue of the formula forDZ0X0 above then
needs a further correction to restore the derivation property, but this time the correction
unfortunately destroys the linearity in theZ-argument in an irrecoverable way. The ‘best
approximation’ to a linear connection can then be achieved by restricting the deviation from
linearity to the smallest possible part. For that purpose, it is necessary to make consistent
use of the threefold splitting ofX (π∗J 1τ0) provided by the projection operatorsPH , PV

andN .
From now on, we distinguish three lifting operations fromX (ρ) to X (π∗J 1τ0): as

shown in appendix A, the connectionχ may be used to give horizontal and ‘diagonal’ lifts,
while in this context we have a vertical lift as well. We may summarize the effects of these
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lifts in the following:

TH0 = 0 XHα = Hα
(
∂

∂qa

)H
= 0

TD0 = 0 XDα = 0

(
∂

∂qa

)D
= Va

TV0 = 0 XVα = Vα
(
∂

∂qa

)V
= 0.

Any vector fieldZ on π∗J 1τ0 may now be written uniquely as the sum of three lifts:

Z = (ZH )H + (ZD)D + (ZV )V .
Here, ZD is fixed by requiring it to be vertical with respect to the projectorπ , ZH is
horizontal with respect to the parametrized connectionχ̌ , and so isZV , with the additional
restriction that〈ZV , dt〉 = 0. In other words, referring to the considerations of the previous
section,ZV only hasXα-components, whileZH may be split further as

ZH = 〈Z, dt〉T0 + Z̄H
where〈Z̄H , dt〉 = 0.

For later use, we also describe the dual process of lifting 1-forms alongρ to 1-forms
on π∗J 1τ0. Any 1-form onπ∗J 1τ0 is fully determined by its action onXH , X̄V and X̃D,
with X ∈ X (ρ). For α ∈ ∧1(ρ), the three types of lifts ofα are defined by

αH (XH) = α(X) αV (X̄V ) = α(X̄) αD(X̃D) = α(X̃)
all other components being zero. This gives rise to the following for the lifts of the local
basis of∧1(ρ):

(dt)H = dt (θα)H = θα (ηa)H = 0

(dt)V = 0 (θα)V = φα (ηa)V = 0

(dt)D = 0 (θα)D = 0 (ηa)D = ηa.
With the threefold decomposition ofX (π∗J 1τ0) now corresponding to the three lift

operations, we start our approach towards a linear connection by the provisional formula
which would work if we had no ‘diagonal parts’:

DZX
?= [PH(Z),XV ]V + [PV (Z),XH ]H + PH(Z)(〈X, dt〉)T0.

This formula does not, however, represent a derivation. Indeed, we find that

DZ(fX)− fDZX = PH(Z)(f )(XV )V + PV (Z)(f )(XH )H + PH(Z)(f )〈X, dt〉T0
= (PH (Z)+ PV (Z))(f )X̂
= ((I −N)Z)(f )X̂
= Z(f )X − Z(f )X̃ − (NZ)(f )X̂.

We shall remedy this deficiency by adding the terms [Z,XD]D + [NZ,XH ]H to our
provisional formula, giving a final definition of the derivationDZ as

DZX = [PH(Z),XV ]V + [(P V +N)(Z),XH ]H + [Z,XD] + PH(Z)(〈X, dt〉)T0.
As anticipated above, however, this operator isnot linear overZ, and so does not represent
a linear connection; we have

DfZX = fDZX −XD(f )ZD
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which shows that the deficiency has been contained in the diagonal part. Another way of
looking at this deficiency is that the formula forDZX would define a linear connection in the
usual way if we were interested in vector fields along the projectionπ ◦ ρ : π∗J 1τ0→ M.

Again taking the theory of unconstrained second-order equations as a model and
thinking, more particularly, of the relation between the linear connection on the bundle
ρ∗0TM → J 1τ0 and the fundamental derivations for the calculus alongρ0, we should now
discover the operations of interest for a calculus alongρ by splitting Z into its three (or
better four) components. Explicitly, the way to extract degree zero derivations on forms
and vector fields alongρ from the derivationDZ goes as follows. For anyX and Y in
X (ρ), we put

DV
Y X = DYV X DH

Y X = DYHX ∇X = DH
T0X = D0X DD

Y X = DYDX.

It is clear that DVY and DHY are covariant derivative type operators: they depend linearly on
Y . For DDY on the other hand we have

DD
Y X = [YD,XH ]H + [YD,XD]D.

It follows that DDY is covariant for its action onX̂ (ρ), but rather acts like a Lie derivative
operator, when restricted tõX (ρ). The extension of these derivations to∧1(ρ) (and
subsequently to arbitrary tensor fields alongρ) is achieved via the usual duality requirement:
D〈X,α〉 = 〈DX,α〉 + 〈X,Dα〉.

We shall use all four of these derivations in our development of the calculus alongρ,
so it is worthwhile, for the convenience of the reader, to summarize their effect on our
basis vector fields and differential forms in a complete table (table 1). WithȲ = ξαXα,
Ỹ = ξa∂/∂qa, see table 1.

Table 1.

DV
Ȳ

T0 = Ȳ DV
Ȳ
Xβ = 0 DV

Ȳ

∂

∂qb
= 0

DH
Ȳ

T0 = 0 DH
Ȳ
Xβ = ξα

∂0
γ
β

∂q̇α
Xγ DH

Ȳ

∂

∂qb
= −ξα ∂B

c
α

∂qb
∂
∂qc

∇T0 = 0 ∇Xβ = 0γβXγ ∇ ∂

∂qb
= − ∂g

c

∂qb
∂
∂qc

DD
Ỹ

T0 = 0 DD
Ỹ
Xβ = 0 DD

Ỹ

∂

∂qb
= − ∂ξ

a

∂qb
∂
∂qa

For 1-forms, see table 2.

Table 2.

DV
Ȳ

dt = 0 DV
Ȳ
θβ = −ξβ dt DV

Ȳ
ηb = 0

DH
Ȳ

dt = 0 DH
Ȳ
θβ = −ξα ∂0

β
γ

∂q̇α
θγ DH

Ȳ
ηb = ξα ∂B

b
α

∂qc
ηc

∇ dt = 0 ∇θβ = −0βγ θγ ∇ηb = ∂gb

∂qc
ηc

DD
Ỹ

dt = 0 DD
Ỹ
θβ = 0 DD

Ỹ
ηb = − ∂ξ

b

∂qa
ηa

Finally, for functions onπ∗J 1τ0 we have

DV

Ȳ
f = YV (f ) DH

Y f = 〈Y, dt〉0(f )+ Ȳ H (f )
∇f = 0(f ) DD

Ỹ
f = YD(f ).

∇ = DH
T0 will be called, as in previous work, the dynamical covariant derivative.
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5. Exterior derivatives and further aspects of the calculus alongρ

In this section, we shall see how the curvatures of the two connectionsσ andχ may be
characterized in terms of the calculus alongρ. There are several good reasons for looking
at the manifestation of curvature in this way. Recall, for example, from the standard theory
of second-order systems [21, 22, 30] that the curvature, regarded as a vector-valued 2-form
along the projection on the base manifold (the mapρ0 in the sketch of the previous section),
turns out to be entirely determined by a type(1, 1) tensor field8, the Jacobi endomorphism.
Here, though, we have two curvatures, and (as may be seen in appendix A) each splits into
two components. We might therefore expect to find four such tensor fields. This is not
quite what is going to happen and it will be instructive to discover that the differences can
roughly be traced back to the deviation of theDZ operator from being a linear connection,
or in other words to the Lie-derivative component of the derivation DD.

For a start, it is obvious that vector-valued 2-forms cannot be obtained from vector-
valued 1-forms through derivations of degree zero, so we will have to explore first what kind
of exterior derivative operations have a natural existence in the present framework. After
introducing an exterior derivative corresponding to each of the D-derivations, first on∧(ρ)
and then, inasmuch as this is possible, also onX (ρ) (and thus on vector-valued forms along
ρ), we compute the decomposition of the Lie brackets of the various lifted vector fields
on π∗J 1τ0. The algebraic parts of such decompositions should be related to (and in fact
determine) the curvatures of the connectionsσ andχ : we find three vector-valued 2-forms
Ri and one symmetric vector-valued 2-tensor fieldG along ρ, which are shown to be in
one-to-one correspondence with the different components ofNN andNPV . The dt-parts of
the tensorsRi give rise to type(1, 1) tensor fields, which are in turn shown to determine
the Ri completely. For the action on functions, since [DZ1,DZ2](f ) = D[Z1,Z2](f ), the
decomposition of the brackets just discussed tells us at the same time how the commutators
of the various D-derivations decompose. The above equality does not hold for the action
on vector fields: the difference between both sides would in fact, ifDZ were truly a linear
connection, define its curvature. We will not compute these curvature-like terms in all
generality here, but restrict such computations to the commutators of∇ with DV , DH and
DD. Let us now develop this logical hierarchy of steps in some detail.

As usual, derivations of scalar forms (here∧(ρ)) are completely determined by their
action on functions and 1-forms. Because of the covariant nature of DV

X and DHX , we can
define degree 1 derivationsdV anddH by dV f (X) = DV

Xf = DV

X̄
f anddHf (X) = DH

Xf =
DH

X̂
f for functionsf ∈ C∞(π∗J 1τ0) (with X ∈ X (ρ) arbitrary), and for a 1-formα along

ρ, definedV α, dHα ∈ ∧2(ρ) by

dV α(X, Y ) = (DV
Xα)(Y )− (DV

Y α)(X)

dHα(X, Y ) = (DH
Xα)(Y )− (DH

Y α)(X).

It is easy to verify that these indeed have the tensorial properties of 2-forms, and thatdV

anddH have the required derivation characteristics.
On the other hand, in view of the Lie derivative aspect in DD

X , we definedD by
dDf (X) = DD

Xf = DD

X̃
f and

dDα(X, Y ) = (DD

X̃
α)(Y )− (DD

Ỹ
α)(X)− α(DD

X̃
Ỹ ).

The covariant part of DD helps to verify that this construction dependsf -linearly onX
andY .
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For practical purposes, we list the coordinate formulae for the exterior derivatives of
functions and 1-forms alongρ. We have:

dV f = Vα(f )θα dHf = 0(f ) dt +Hα(f )θα dDf = Va(f )ηa
and table 3 for the actions on basis 1-forms.

Table 3.

dV (dt) = 0 dV θα = dt ∧ θα dV ηa = 0

dH (dt) = 0 dH θα = −0αβ dt ∧ θβ dH ηa = ∂ga

∂qb
dt ∧ ηb + ∂B

a
α

∂qb
θα ∧ ηb

dD(dt) = 0 dDθα = 0 dDηa = 0

Since we actually have exterior derivatives of vector-valued forms in mind, we ought
to extend the action of these operations to vector fields alongρ if possible. We may define

dVX(Y ) = DV
Y X dHX(Y ) = DH

Y X dDX̂(Y ) = DD

Ỹ
X̂

where it has to be emphasised thatdD can be defined only onX̂ (ρ), because of the
nonlinearity inỸ of the action of DD

Ỹ
on X̃ (ρ). The coordinate expressions of interest here

(in a slightly different arrangement) are shown in table 4.

Table 4.

dV T0 = θα ⊗Xα dHT0 = 0 dDT0 = 0

dV Xα = 0 dHXα = 0βα dt ⊗Xβ +
∂0

γ
β

∂q̇α
θβ ⊗Xγ dDXα = 0

dV ∂
∂qa
= 0 dH

(
∂
∂qa

)
= − ∂g

b

∂qa
dt ⊗ ∂

∂qb
− ∂B

b
α

∂qa
θα ⊗ ∂

∂qb
—

To see a manifestation of the curvatures at the level of the calculus alongρ, one has to
compute Lie brackets of the various types of lifts of vector fields alongρ. We repeat that
the main idea behind such computations is that relevant operations onX (ρ) will become
apparent by looking at the decomposition of the resulting vector fields onπ∗J 1τ0. Such
a procedure in fact could be used to define theD-derivations to some extent, while the
curvature components are expected to make their appearance in the algebraic parts of the
decomposition.

It is appropriate to introduce the following bracket operations on the various submodules
of X (ρ):

[X̄, Ȳ ]V = DV

X̄
Ȳ − DV

Ȳ
X̄

[X̂, Ŷ ]H = DH

X̂
Ŷ − DH

Ŷ
X̂

[X̃, Ỹ ]D = DD

X̃
Ỹ − DD

Ỹ
X̃.

A straightforward calculation then yields the following results:

[X̄V , Ȳ V ] = ([X̄, Ȳ ]V )
V

[X̃D, Ỹ D] = ([X̃, Ỹ ]D)
D

[X̄V , Ỹ D] = (DV

X̄
Ỹ )D − (DD

Ỹ
X̄)V

[X̂H , Ŷ H ] = ([X̂, Ŷ ]H )
H + (R1(X̂, Ŷ ))

D + (R2(X̂, Ŷ ))
V

[X̃D, Ŷ H ] = (DD

X̃
Ŷ )H − (DH

Ŷ
X̃)D + (R3(X̃, Ŷ ))

V

[X̄V , Ŷ H ] = (DV

X̄
Ŷ )H − (DH

Ŷ
X̄)V + (G(X̄, Ŷ ))D.
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As expected, curvature components arise when the distributions are not integrable, i.e. when
‘horizontal’ vector fields are involved. The tensor fieldsR1, R2 andR3 are vector-valued
2-forms alongρ. Less expected is thatG on the other hand is a symmetric vector-valued
2-tensor. The coordinate expressions of these tensor fields read as follows:

R1 = 9c
β dt ∧ θβ ⊗ ∂

∂qc
+ 1

2(Hα(B
c
β)−Hβ(Bcα))θα ∧ θβ ⊗

∂

∂qc

R2 = 8γ

β dt ∧ θβ ⊗Xγ + 1
2((Hα(0

γ

β )−Hβ(0γα ))θα ∧ θβ ⊗Xγ

R3 = −∂f
γ

∂qb
dt ∧ ηb ⊗Xγ + ∂0

γ
α

∂qb
θα ∧ ηb ⊗Xγ

G = ∂2ga

∂q̇α∂q̇β
θα ⊗ θβ ⊗ ∂

∂qa
.

The relationship between these tensors and the curvaturesNN andNPV is now obvious. A
kind of vertical lift of R2 + R3 givesNPV . The same procedure applied toR1 gives rise
to the first part ofNN . The relationship between the second part ofNN andG is more
subtle: it is of the same type as the so-called Kähler lift which relates a symmetric tensor
field determined by the Hessian matrix of a Lagrangian to the Poincaré–Cartan 2-form. We
refer to [22] and [30] for this construction and do not elaborate on it further here.

Observe in passing that the two different meanings we have given to vector fields
carrying a subscriptV , D or H (one for the decomposition of vector fields onπ∗J 1τ0 and
one for brackets of vector fields alongρ) are consistent. Indeed we see from the above
relations that [̄X, Ȳ ]V = ([X̄V , Ȳ V ])V and likewise for the other two notations.

We are now ready to define three type(1, 1) tensor fields which are obtained simply
from the dt-part of the curvature tensorsRi . Explicitly, let 9 = iT0R1, 8 = iT0R2 and
3 = iT0R3. The components of9 and8 were already listed in section 3, but we repeat
the full expressions here because of the importance of these tensor fields:

9 = (0(Bcβ)−Xβ(gc))θβ ⊗
∂

∂qc

8 = −(0(0γβ )+Xβ(f γ )+ 0αβ0γα )θβ ⊗Xγ
3 = −∂f

γ

∂qb
ηb ⊗Xγ .

One of the striking features of these tensors is that they actually determine the curvature
2-formsRi completely. Indeed, it is fairly easy to verify in coordinates that:

R1 = 1
2(d

V9 + dt ∧9)
R2 = 1

3(d
V8+ 2dt ∧8)

R3 = 1
2(d

V3+ 2dt ∧3).

Remark. The tensor field8 defined in our earlier work ([27, 28]) was in fact the sum of the
8 and3 which are introduced here. The analysis of the next section will illustrate that the
present option is more appropriate, but a sufficient argument for choosing it would be that
the non-zero parts of the coefficient matrices of the two tensors have different dimensions.

The next step which one logically makes in building up a calculus alongρ is to
look at the commutators of the fundamental degree zero derivations introduced in the
previous section. In fact, the above bracket relations already carry the information for
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these commutators inasmuch as their action on functions is concerned. Indeed, it follows
from the definitions that on functionsf we have:

[DV

X̄
,DV

Ȳ
](f ) = DV

[X̄,Ȳ ]V
(f )

[DD

X̃
,DD

Ỹ
](f ) = DD

[X̃,Ỹ ]D
(f )

[DV

X̃
,DD

Ỹ
](f ) = (DD

DV

X̄
Ỹ
− DV

DD

Ỹ
X̄
)(f )

[DH

X̂
,DH

Ŷ
](f ) = (DH

[X̂,Ŷ ]H
+ DD

R1(X̂,Ŷ )
+ DV

R2(X̂,Ŷ )
)(f )

[DD

X̃
,DH

Ŷ
](f ) = (DH

DD

X̃
Ŷ
− DD

DH

Ŷ
X̃
+ DV

R3(X̃,Ŷ )
)(f )

[DV

X̂
,DH

Ŷ
](f ) = (DH

DV

X̄
Ŷ
− DV

DH

Ŷ
X̄
+ DD

G(X̄,Ŷ )
)(f ).

In appendix B, building on our experience for second-order systems, we sketch a few
aspects of what a complete theory of derivations of forms alongρ would tell us about their
canonical decomposition. It would follow from such a theory that the difference between
the two sides of each of the above relations among degree zero derivations (when they are
allowed to act on vector fields and forms as well) can merely be an ‘algebraic derivation’, i.e.
a derivation vanishing on functions. Such a derivation (of degree 0) is determined by a type
(1, 1) tensor field, sayQ, and then written asµQ. Its action on vector fieldsU ∈ X (ρ) or
1-formsα ∈ ∧1(ρ) is given byQ(U) and−Q(α) respectively. So, to complete the picture
about commutators of D-derivations, all that needs to be done, in principle, is to compute
theQX,Y tensor for each case.

In fact, there is a lot more that can be said about these tensors. As we learn from
[7], if the founding father of the D-derivations, i.e. the operationDZ introduced in the
preceding section, really had been a linear connection on the bundleρ∗T E→ π∗J 1τ0, then
its curvature would be defined by curv(Z1, Z2) = [DZ1,DZ2] −D[Z1,Z2] . This implies that
the different tensor fieldsQX,Y we are talking about here would essentially constitute the
components of the curvature of this linear connection. In the present situation,DZ falls
short of defining a linear connection. The effect of the deviation from a linear connection
is that the tensor fieldsQX,Y will not in all cases depend tensorially onX andY as well:
sometimes derivatives of the components ofX andY will be involved. For the first two
commutators in the above list there are no terms of typeµQ, i.e. the correspondingQ-tensor
is zero. Computing theQ-tensors for the other cases is a rather messy enterprise and so we
will abstain from it in the general case. We will instead pay more attention to the special
case where one of the operands in the commutator is the dynamical covariant derivative
∇ = DH

T0 . Incidentally, it is possible to obtain all such commutator relations in a coordinate
free way by using the Jacobi identity, applied to suitable combinations of derivations. Often,
however, the result will follow more quickly from a coordinate calculation.

The following results are obtained:

[∇,DV

X̄
] = −DH

X̄
+ DV

∇X̄
[∇,DD

X̃
] = DD

∇X̃ + DV

3(X̃)
+ µQD

X̃

[∇,DH

X̂
] = DH

∇X̂ + DV

8(X̂)
+ DD

9(X̂)
+ µQH

X̂

where the(1, 1) tensorsQD

X̃
andQD

X̂
are given by

QD

X̃
= iX̃R3− i3dV X̃

QH

X̂
= 2iX̂R2− DV

X̂
8− 2〈X̂ dt〉8+ iX̂4+9 ◦ dDX̂ −3 ◦ (X̂cG).
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Here4 is a vector-valued 2-form alongρ, which can be constructed out ofG and3:

4(X, Y ) = (3cG)(X, Y )− (3cG)(Y,X).
In coordinates:

4 = ∂f γ

∂qb

∂Bcα

∂q̇γ
θα ∧ ηb ⊗ ∂

∂qc
.

6. The calculus alongρ at work

In this section we wish to develop, as an application of the basic intrinsic operations which
have been introduced so far, a theory of adjoint symmetries for mixed first- and second-order
equations. The idea will be that, with the most essential tools at hand, everything else should
follow without needing to use coordinate expressions. Infinitesimal generators of symmetry
transformations of differential equations are more familiar than adjoint symmetries, so we
shall first derive the characterization of symmetries within the framework of vector fields
along ρ (which is the most economical way for writing the determining equations in a
coordinate free way), and then proceed to the theory of adjoint symmetries by duality.

Let Z ∈ X (π∗J 1τ0) be a dynamical symmetry of the given dynamics0. As usual,
two symmetries should be regarded as equivalent if their difference is a multiple of0.
This means that we can concentrate, without loss of generality, on a representative of the
class for whichL0Z = 0. Such a representative will not have a0-component so that, in
accordance with the general discussion of section 4,Z will have a unique decomposition
of the form

Z = X̄H + X̃D + Ȳ V

for someX̄, X̃, Ȳ ∈ X (ρ).
From the brackets of lifted vector fields computed at the beginning of the previous

section, in the special case where one of the vector fields is0 = TH0 , we obtain

L0X̄V = −X̄H + (∇X̄)V
L0X̂H = (∇X̂)H +9(X̂)D +8(X̂)V
L0X̃D = (∇X̃)D +3(X̃)V .

It now follows thatL0Z = 0 is equivalent to specifying that̄Y = ∇X̄, and requiring that̄X
andX̃ must be solutions of the mixed first- and second-order partial differential equations

∇2X̄ +8(X̄)+3(X̃) = 0

∇X̃ +9(X̄) = 0.

Essentially, therefore, looking for a symmetry means looking for a vector fieldX ∈ X (ρ),
of the formX = X̄ + X̃, satisfying the above two conditions. Note that8(X) = 8(X̄),
3(X) = 3(X̃) and9(X) = 9(X̄), and also that the left-hand side of the first equation
takes values inX̄ (ρ), whereas this isX̃ (ρ) for the second equation. As a result, the two
conditions can equivalently be cast into the single condition

∇2X̄ +∇X̃ + (8+3+9)(X) = 0.

The dualization of this picture is easily obtained using the standard procedure by which
one defines the adjoint of a linear partial differential operator. Hence, we adopt here the
following definition for the concept of adjoint symmetries.
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Definition. An adjoint symmetry of0 is a 1-formα ∈ ∧1(ρ), of the formα = ᾱ + α̃ =
aβθ

β + cbηb, satisfying

∇2ᾱ −∇α̃ + (8+3+9)(α) = 0.

It is easy to see, for instance from the coordinate expressions, that the submodules∧1(ρ)

and ∧̃1
(ρ) are invariant under∇ and8. On the other hand,3 has∧̃1

(ρ) in its kernel and
maps∧̄1

(ρ) into ∧̃1
(ρ), whereas9 does the reverse. As a result, the single condition of

the definition is equivalent to the two conditions

∇2ᾱ +8(α̃)+9(α̃) = 0.

−∇α̃ +3(ᾱ) = 0.

Observe that, in [27, 28], the adjoint symmetry condition did not split into two separate
conditions; this was due to the fact that8+3 was regarded there as a single tensor (called
8). It is clear that the present situation is more elegant, if only because of the similarity
with the picture for symmetries. Comparison with the line of approach adopted in [28]
shows that, ifα is an adjoint symmetry of0, thenφ = ᾱ + α̃D − (∇ᾱ)H will be a 0-
invariant 1-form onπ∗J 1τ0 with 0 in its kernel. More strongly, one can show that this
formula establishes a bijective correspondence between 1-formsφ satisfying the conditions
L0φ = 0 and i0φ = 0, and adjoint symmetries in the sense defined here. Hence, in
particular, all first integrals of the system should correspond to certain adjoint symmetries,
and these will be of the formdV F + dDF for some functionF .

When we wish to substitute anα of this form in the adjoint symmetry condition, it
is clear that we will need to know how the dynamical covariant derivative∇ commutes
with the exterior derivatives. Since the exterior derivatives were defined in terms of the
D-derivations, it is fairly easy to obtain this information from the commutator relations for
[∇,DV

X̄
], [∇,DD

X̃
] and [∇,DH

X̂
]. We limit ourselves to the action on scalar forms alongρ.

From the defining relation ofdV α, for example, we find:

∇dV α(X, Y )+ dV α(∇X, Y )+ dV α(X,∇Y ) = (DV

X̄
∇α − DH

X̄
α + DV

∇X̄α)(Y )+ DV

X̄
α(∇Y )

−(DV

Ȳ
∇α − DH

Ȳ
α + DV

∇Ȳ α)(X)− DV

Ȳ
α(∇X).

Subtracting

dV∇α(X, Y ) = DV

X̄
∇α(Y )− DV

Ȳ
∇α(X)

it then readily follows that, on∧(ρ),
[∇, dV ] = −dH + dt ∧ ∇.

The other two commutators are somewhat more involved; we obtain (see appendix B for
notations)

[∇, dD] = dV3 + iR3 − 2dt ∧ i3
[∇, dH ] = dV8 + dD9 + 2iR2 − 2dt ∧ i8 − i4.

If one were to extend these commutator relations to vector-valued forms (whenever that
makes sense), there would again be additional algebraic terms arising. We shall, however,
not need these extensions for our present purposes.

Now let α be an adjoint symmetry for which̄α = dV F and α̃ = dDF . Then

∇dV F = dV∇F − dHF + (∇F) dt

from which it follows, applying∇ again and using the commutator [∇, dH ], that

∇2dV F = ∇(dV∇F + (∇F) dt)− dH∇F −8(dV F )−9(dDF).
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PuttingL = ∇F , we conclude that the second-order requirement forα to be an adjoint
symmetry is equivalent to:

dHL = ∇(dV L+ L dt).

Similarly, the first-order condition is found to be equivalent to

dDL = 0.

In coordinates, the first condition says that0(Vβ(L)) = Xβ(L), but the right-hand side, in
view of the second condition, reduces further. Altogether we obtain

0

(
∂L

∂q̇α

)
= ∂L

∂qα
with

∂L

∂qb
= 0.

Therefore, provided that the Hessian matrixVβVα(L) is regular, the conclusion is that the
right-hand sidesf α of the second-order equations do not depend on theqb coordinates
and that these equations actually come from Euler–Lagrange equations. It is easy also to
formulate a converse statement, so that we arrive at the following theorem.

Theorem. If 0 has an adjoint symmetry of the formα = dV F + dDF , and if VβVα(L)
is regular (whereL = ∇F ), then the second-order differential equations coming from0
are decoupled from the first-order ones and are the Lagrange equations with Lagrangian
L. Conversely, if the second-order equations are Lagrange equations with a Lagrangian
L(t, qβ, q̇β) of the formL = ∇F for some functionF ∈ C∞(π∗J 1τ0), thenα = dV F+dDF
is an adjoint symmetry.

This result is of course not quite the one which was predicted when we referred to
adjoint symmetries related to first integrals. Let us see now how the generation of first
integrals is in some sense a particular case. What is already obvious from the preceding
analysis is that for any first integralF with ∇F = 0, the 1-formdV F + dDF is an adjoint
symmetry. Conversely, however, the situation may be more complicated, since a Lagrangian
L = ∇F (which is not regular) may be a first integral in disguise through the customary
gauge freedom. We have seen above that forᾱ = dV F ,

∇ᾱ + dHF = dV L+ L dt with L = ∇F.
The right-hand side is like a Poincaré–Cartan form

θL = ∂L

∂q̇β
θβ + L dt.

WhenL is a total time-derivative of some functionf , this necessarily has to be a function
onM, and an easy way to express this is to say thatθL, regarded as a ‘semi-basic’ 1-form on
π∗J 1τ0, is exact (or closed for local results). We therefore come to the following statement.

Theorem. Let α = dV F + dDF be an adjoint symmetry of0, such that∇ᾱ + dHF ,
regarded as 1-form onπ∗J 1τ0, is (locally) of the form df . ThenF − f is a first integral
of 0. Conversely, every first integral can be obtained through such a procedure: ifF is a
first integral, thendV F + dDF is an adjoint symmetry.
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It is worthwhile highlighting a quite striking feature of these results. Compared to the
standard theory of second-order equations, the second theorem is the type of result one
expects: it produces a general mechanism by which first integrals can be generated, and
this mechanism is likely to reduce to the more familiar relationship between symmetries and
conservation laws (Noether’s theorem) whenever the given system of differential equations
is self-adjoint (cf [29]). The situation covered by the first theorem, however, is less
expected, because it first of all creates circumstances in which the second-order equations
are decoupled from the first-order ones, and then the additional statement is that the second-
order equations will be of Lagrangian type.
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Appendix A: Connections on fibre-product bundles

Suppose we have two bundlesµ0 : Y → M andν0 : Z→ M over the same base manifold.
We may consider the fibre-product manifoldY ×M Z, and the projections of this manifold
onto its components define two further bundlesν : Y ×M Z → Y andµ : Y ×M Z → Z.
We shall be interested in connections defined on these two new bundles, and the way such
connections interact with each other. (For the situation described in the main body of the
paper, the base manifoldM has an additional fibration overR, Y andZ are the manifolds
E andJ 1τ0 respectively, and their fibred product overM is π∗J 1τ0.)

In general, a connection on (say)µ is a section of the first jet bundleJ 1µ→ Y ×M Z.
In the present situation, though, we may define a distinguished submanifold(J 1µ)0 of J 1µ

and consider only those sections which take their values in this submanifold. To construct
the submanifold, consider those (local) sectionsψ of µ which are ‘projectable’ toµ0, in
the sense that there are corresponding sectionsψ0 of µ0 satisfyingψ0 ◦ ν0 = ν ◦ ψ . We
shall define(J 1µ)0 as the submanifold of jetsj1

pψ admitting a representative section which
is projectable: it is clear that this submanifold has a natural identification withJ 1µ0×M Z.
We shall call a sectionσ of J 1µ0 ×M Z → Y ×M Z a projectable connection onµ: the
name is appropriate because the composition ofσ followed by projection on the first factor
of J 1µ0 ×M Z gives a mapσ̌ : Y ×M Z → J 1µ0 which is rather like a connection onµ0

parametrized byZ. Conversely, starting from̌σ we may recoverσ in full by specifying
that the second component of the image should be given by the identity onZ.

Now suppose we have two projectable connectionsσ andχ on µ andν, respectively.
As the connections are projectable, we may combine them to give a connectionκ on
the composite bundleλ = ν0 ◦ µ : Y ×M Z → M, using the natural identification of
J 1λ with the fibre productJ 1µ0 ×M J 1ν0: we just specify thatκ should be given by
κ(x, y, z) = (σ̌ (x, y, z), χ̌(x, y, z)). Conversely, starting withκ, we may obtainσ̌ and χ̌
by projecting on the first and second factor, respectively, and hence recoverσ andχ .
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J 1µ0×M J 1ν0
∼= J 1λ Y ×M J 1ν0

J 1µ ⊃ J 1µ0×M Z Y ×M Z Z
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σ̌

In terms of the horizontal and vertical tangent vectors associated with each connection,
we find that

Horκ = Horσ ∩ Horχ

whereas

Horσ = Horκ ⊕ V ν
Horχ = Horκ ⊕ Vµ.

Take local coordinate systemsxA onM, (xA, ya) on Y , (xA, zα) onZ, and(xA, ya, zα)
on Y ×M Z. The horizontal projector of a general connectionσ on µ would be given in
these coordinates by

PHσ = dxA ⊗
(
∂

∂xA
+ σaA

∂

∂ya

)
+ dzα ⊗

(
∂

∂zα
+ σaα

∂

∂ya

)
but if σ is a projectable connection then the coefficientsσaα all vanish, so that

PHσ = dxA ⊗
(
∂

∂xA
+ σaA

∂

∂ya

)
+ dzα ⊗ ∂

∂zα
.

Similarly

PHχ = dxA ⊗
(
∂

∂xA
+ χαA

∂

∂zα

)
+ dya ⊗ ∂

∂ya
,

and we also find that

PHκ = dxA ⊗
(
∂

∂xA
+ σaA

∂

∂ya
+ χαA

∂

∂zα

)
.

These formulae become easier to read if we use bases of vector fields and differential forms
adapted to the connections, rather than the coordinate bases. For the basis of vector fields
we shall use

HA = ∂

∂xA
+ σaA

∂

∂ya
+ χαA

∂

∂zα

∂

∂ya

∂

∂zα
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and for the dual basis of forms we shall use

dxA ηa = dya − σaA dxA φα = dzα − χαA dxA.

The formulae for the horizontal projectors then become

PHσ = dxA ⊗HA + φα ⊗ ∂

∂zα

PHχ = dxA ⊗HA + ηa ⊗ ∂

∂ya

PHκ = dxA ⊗HA
so that

PHκ + PVσ + PVχ = I
wherePVσ , PVχ are the corresponding vertical projectors.

We may also consider the horizontal projectors of the ‘parametrized connections’σ̌ and
χ̌ . These will be tensor fields alongν andµ, respectively, and in coordinates onY , Z will
be given by

PHσ̌ = dxA ⊗
(
∂

∂xA
+ σaA

∂

∂ya

)
PHχ̌ = dxA ⊗

(
∂

∂xA
+ χαA

∂

∂zα

)
.

We shall be particularly interested in using these connections to decompose vector fields
and curvature tensors. It is clear that any vector field onY ×M Z may be written as the
sum of three components by using the decomposition of the identity tensor given above.
We shall, however, be more concerned with vector fieldsX along the projectionν, and the
parametrized connectioňσ may be used to split such a vector field into two componentsX̂,
X̃ according to the rule

X̂p = (PHσ̌ )p(Xp) X̃p = (P Vσ̌ )p(Xp)
at each pointp ∈ Y ×M Z.

We now have three vector fields alongν: the original oneX, and its two components
X̂, X̃ which are, respectively, horizontal and vertical with respect toσ . But to any vector
field alongν we may apply the horizontal lift defined by the other connectionχ , giving a
lifted vector field onY ×M Z. We shall denote theχ -horizontal lift of X̂ by XH , and the
χ -horizontal lift of X̃ by XD. The reasoning behind the notation is thatXH is horizontal
with respect to bothσ andχ (and hence, also, with respect toκ), whereasXD is horizontal
with respect toχ but vertical with respect toσ , and so may be thought of as ‘diagonal’. In
coordinates, if

X = ξA
(
∂

∂xA
+ σaA

∂

∂ya

)
+ ξa ∂

∂ya

then

X̂ = ξA
(
∂

∂xA
+ σaA

∂

∂ya

)
X̃ = ξa ∂

∂ya

and

XH = ξAHA XD = ξa ∂

∂ya
.
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We can see a similar phenomenon when looking at the curvatures of the three
connections: each splits naturally into two components. Calculating the Nijenhuis tensor of
the horizontal projector ofσ , we find that

Nσ = 1

2
(HA(σ

a
B)−HB(σaA)) dxA ∧ dxB ⊗ ∂

∂ya
+ ∂σ

a
B

∂zα
φα ∧ dxB ⊗ ∂

∂ya

= N̂σ + Ñσ
whereÑσ = PVχ cNσ and N̂σ = Nσ − Ñσ . The relationship between the three curvatures
may then be given by the formula

Nκ = N̂σ + N̂χ .
It is interesting to note that, whereas the connectionκ completely determines the two
projectable connectionsσ andχ , it is not the case that the curvature ofκ determines the
curvatures ofσ andχ : two curvatures are always needed to determine the third.

Appendix B. Derivations of forms alongρ

For the general definition of derivations of scalar and vector-valued forms alongρ, we refer
to the similar concepts along the tangent bundle projection in [21]. Following the pattern
of the standard theory of Fröhlicher and Nijenhuis [13], one is naturally interested in a
classification of such derivations. We give a sketch here of how this works in the present
situation, without giving any proofs.

If L ∈ V r(ρ) denotes a vector-valuedr-form alongρ, the meaning of the derivationiL,
of degreer − 1, is familiar. We will denote bydVL , dDL anddHL the derivations of degree
r obtained via the commutator ofiL and the exterior derivatives defined in section 5. In
fact, each of these derivations will be relevant only whenL takes values inX̄ (ρ), X̃ (ρ)
and X̂ (ρ) respectively. We will denote this by the corresponding symbol onL.

One can prove that every derivationD of ∧(ρ) has a unique decomposition in the form:

D = iL1 + dVL̄2
+ dD

L̃3
+ dH

L̂4
.

Looking for such decompositions is one of the ways by which derivations can lead to the
discovery of new tensor fields. We illustrate this by investigating the decomposition of the
commutators of the exterior derivatives. For a start we have

dV ◦ dV = dt ∧ dV dD ◦ dD = 0

and

[dV , dD] = 0 [dV , dH ] = 0.

It will not be a surprise that curvature components arise when we look at the remaining
commutators involvingdH . We obtain

[dH , dD] = −idt∧R3 + dVR3

dH ◦ dH = 1
2[dH , dH ] = −idV R2+6 + dDR1

+ dVR2
.

Here, the apparently new vector-valued 3-form6 turns out to be derived from the vector-
valued 2-form4 introduced in section 5:

6 = 1
2(d

V4+ dt ∧4).
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In this respect, it is also worthwhile to observe the following properties of theRi tensors
which are easily obtained from their expressions in terms of the(1, 1) tensors9,8,3:

dV R1 = 0

dV R2 = −dt ∧ R2

dV R3 = −dt ∧ R3.

We do not enter into the extension of these derivations to vector-valued forms as they are
not always defined on the complete setV (ρ). The situation is different when it concerns a
derivation of degree zero, as such a derivation can always be extended to vector fields (and
then to all tensor fields) by the duality rule.

Let D be an arbitrary derivation of∧(ρ) of degree 0. According to the general
decomposition result, we know that there exist vector fieldsX̄, Ŷ , Z̃ ∈ X (ρ) and some
L1 ∈ V 1(ρ), such that

D = iL1 + dVX̄ + dHŶ + dDZ̃ .
Now, from the definition of the exterior derivatives we easily obtain that forω ∈ ∧1(ρ),

(dV
X̄
ω)(Y ) = (DV

X̄
ω)(Y )+ ω(dV X̄(Y )).

A similar property holds fordH
Ŷ

, but the situation is different fordD, where one finds

dD
Z̃
= DD

Z̃
.

It follows that

D = DV

X̄
+ DH

Ŷ
+ DD

Z̃
− iQ,

with −Q = L1 + dV X̄ + dH Ŷ not depending oñZ. If we next extend the action ofD by
duality, the term−iQ (which vanishes on vector fields by definition) is replaced by, say,aQ,
an algebraic derivation vanishing on forms and acting on vector fields asaQ(X) = Q(X).
It follows that every self-dual derivationD of degree 0 has a unique decomposition into
four self-dual components, namely

D = DV

X̄
+ DH

Ŷ
+ DD

Z̃
+ µQ

with µQ = aQ − iQ. The algebraic derivationµQ vanishes on functions. Therefore,
once the action of a self-dual derivation of degree zero is known on functions, its complete
determination is a matter of finding the type(1, 1) tensor fieldQ in the above decomposition.
This is the technique which has been used to describe, in section 5, the properties of the
self-dual derivations which are obtained through the commutators of the basicD-derivations
introduced in section 4.
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[14] Foulon P 1986 Ǵeometrie deśequations differentielles du second ordreAnn. Inst. H Poincar´e, Phys. Th´eor.
45 1–28

[15] Giachetta G 1992 Jet methods in nonholonomic mechanicsJ. Math. Phys.33 1652–65
[16] Grifone J 1972 Structure presque tangente et connexions IAnn. Inst. Fourier22 No 1 287–334
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